Improving app server for WebKit

Julian Harnath
<julian.harnath@rwth-aachen.de>

Introduction

Transparency Layers

Transforms and Clipping

Little Things Add Up

Outlook

Introduction

Transparency Layers

Transforms and Clipping

Little Things Add Up

Outlook

Applications on Haiku

Server

app_server

Server link

Application

Clients

Applications on Haiku

Server

app_server

Server link

Application

Clients

ServerWindow

BWindow

Interface Kit

Getting to Painter (1)

A very incomplete overview...

MessageLooper

Receives T

app_server SaryerWindow
messages

Getting to Painter (1)

A very incomplete overview...

Messagelooper
g P State, coordinate Entries of
_ T conversion, ... state stack
Receives
app_server — SeryerWindow Canvas *—— DrawState
o \ / \
Wind / Drawing into offscreen
Indow on Window View OffscreenCanvas = buffer (e.g. BView

screen” attached to BBitmap)

Getting to Painter (1)

A very incomplete overview...

MessageLooper
g P State, coordinate Entries of
_ T conversion, ... state stack
Receives
app_server — SeryerWindow Canvas *—— DrawState
o \ / \
“Wind Drawing into offscreen
Indow on Window View OffscreenCanvas = buffer (e.g. BView

screen’

\ / attached to BBitmap)

DrawingEngine

Getting to Painter (1)

A very incomplete overview...

MessagelLooper
g P State, coordinate Entries of
_ T conversion, ... state stack
Receives
app_server SeryerWindow Canvas *—— DrawState
o \ / \
“Wing / Drawing into offscreen
Indow on Window ——e View OffscreenCanvas = buffer (e.g. BView

screen’

\ / attached to BBitmap)

DrawingEngine

/ \ “Graphics card”

Painter HWiInterface Fram.e buﬁgr pointer,
drawing using hardware

(in software) AGG (simple primitives), ...

Draws
things/

Getting to Painter (2)

Drawing a rectangle...

BView::FillRect()
Client

app_server

Getting to Painter (2)

Drawing a rectangle...

BView::FillRect()
Client 1 Message: AS_FILL RECT with BRect payload

app_server

ServerWindow

Getting to Painter (2)

Drawing a rectangle...

BView::FillRect()
Client 1 Message: AS_FILL RECT with BRect payload

app_server

ServerWindow

— View::PenToScreenTransform() Transform rect to screen coordinates

— Window::GetDrawingEngine() ~ Get the engine of this window

v

Getting to Painter (2)

Drawing a rectangle...

BView::FillRect()
Client 1 Message: AS_FILL RECT with BRect payload

app_server

ServerWindow

— View::PenToScreenTransform() Transform rect to screen coordinates

— Window::GetDrawingEngine() ~ Get the engine of this window

\ 4
DrawingEngine::FillRect()

Painter::ClipRect()

State? Painter::FillRect()
HW accel?
HWiInterface::FillRegion()

Introduction

Transparency Layers

Transforms and Clipping

Little Things Add Up

Outlook

Transparency Layers

T

Global alpha

s

Transparency layer

The Workaround

(1) Create a new empty BBitmap and attach BView

(2) Draw into bitmap

(3) Draw bitmap onto background with added transparency (via
ClipToPicture), throw away BBitmap

The Problem

(1) Create a new empty BBitmap and attach BView

On some websites, WebKit likes to use many layers, especially
when doing many renders during scrolling.

Bad: we don’t know the size of the drawing yet, so we have to
create the BBitmap at view size.
In WebPositive, this is almost the whole browser window size!

Worse: attaching a BView to a BBitmap spawns an offscreen
window thread inside app_server.

A Better Solution

Let app_server know what we're doing!

A Better Solution

Let app_server know what we're doing!

Q)

1. Draw circle
2. Draw rectangle
3. Draw triangle

€

(1) Client: start layer; then
draw things.

app_server does not draw,
and instead just writes
down the list of operations.

Q)
1. Draw circle
2. Draw rectangle
3. Draw triangle
¢

(1) Client: start layer; then
draw things.

app_server does not draw,
and instead just writes
down the list of operations.

A Better Solution

Let app_server know what we're doing!

(2) Client: end layer.
app_server looks at the
operations written down and
figures out the (approx.)
bounding box of this drawing,
without actually drawing it

1. Draw circle
2. Draw rectangle
3. Draw triangle

€

(1) Client: start layer; then
draw things.

app_server does not draw,
and instead just writes
down the list of operations.

Q)

A Better Solution

Let app_server know what we're doing!

(2) Client: end layer.
app_server looks at the
operations written down and
figures out the (approx.)
bounding box of this drawing,
without actually drawing it

(3) Create UtilityBitmap of
bounding box size and clear
it. UtilityBitmap is
app_server-internal and
spawns no new thread!

A Better Solution

Let app_server know what we're doing!

Q)

1. Draw circle
2. Draw rectangle
3. Draw triangle

€

(1) Client: start layer; then
draw things.

app_server does not draw,
and instead just writes
down the list of operations.

(4) Draw into UtilityBitmap
from written down operations

(2) Client: end layer.
app_server looks at the
operations written down and
figures out the (approx.)
bounding box of this drawing,
without actually drawing it

(3) Create UtilityBitmap of
bounding box size and clear
it. UtilityBitmap is
app_server-internal and
spawns no new thread!

A Better Solution

Let app_server know what we're doing!

Q)

1. Draw circle
2. Draw rectangle
3. Draw triangle

€

(1) Client: start layer; then
draw things.

app_server does not draw,
and instead just writes
down the list of operations.

(4) Draw into UtilityBitmap
from written down operations

(2) Client: end layer.
app_server looks at the
operations written down and
figures out the (approx.)
bounding box of this drawing,
without actually drawing it

(5) Draw bitmap with
transparency (via AlphaMask)
and discard it

(3) Create UtilityBitmap of
bounding box size and clear
it. UtilityBitmap is
app_server-internal and
spawns no new thread!

A Better Solution

Let app_server know what we're doing!

Q)

1. Draw circle
2. Draw rectangle
3. Draw triangle

€

(1) Client: start layer; then
draw things.

app_server does not draw,
and instead just writes
down the list of operations.

(4) Draw into UtilityBitmap
from written down operations

(2) Client: end layer.
app_server looks at the
operations written down and
figures out the (approx.)
bounding box of this drawing,
without actually drawing it

(5) Draw bitmap with
transparency (via AlphaMask)
and discard it

(3) Create UtilityBitmap of
bounding box size and clear
it. UtilityBitmap is
app_server-internal and
spawns no new thread!

Problem solved!

BPicture Saves the Day

- y e e
Ve \\ /7 \
1. Draw circle - - /_z_l \\
2. Draw rectangle AN S L s
3. Draw triangle | I
G) '........!-n.rr.m.rr.m.n.].......:
ServerPicture PictureBoundingBoxPlayer

Details to observe: drawing offset, transforms, clipping, draw state, drawing mode, ...

Layer API

void BView::BeginLayer(uint8 opacity);
void BView::EndLayer();

Introduction

Transparency Layers

Transforms and Clipping

Little Things Add Up

Outlook

Transforms: Rb

void BView::SetOrigin(float x, float y);

void BView::SetScale(float ratio);

Translation, Scaling

BAffineTransform (Haiku)

void BView: :SetTransform(BAffineTransform transform);
BAffineTransform BView::Transform() const;

BAffineTransform

Translation, Scaling/Mirroring, Rotation, Shearing

' S sh t BAffineTransform:: ...
P X X X Px AffineTranslation()
p'y = wa S, ty 1 Py AffineRotation()

AffineScaling()
1 0 0 1 1 AffineShearing()

BAffineTransform (Haiku)

void BView: :SetTransform(BAffineTransform transform);
BAffineTransform BView::Transform() const;

BAffineTransform

Translation, Scaling/Mirroring, Rotation, Shearing

' S sh t BAffineTransform:: ...
P X X X Py AffineTranslation()
ply — Shy Sy ty . py AfﬁneRotation()
AffineScaling()
1 0 0 1 1 AffineShearing()
Composition

p'=B(Ap) =(BA)p

Multiply(), PreMultiply()
TranslateBy(), ScaleBy(), RotateBy(), ShearBy()

Clipping

R5 API: clipping region

void BView::ConstrainClippingRegion(BRegion* region);

fast

R5 API: clipping mask

void BView::ClipToPicture(BPicture* picture, [.]):
void BView::ClipToInversePicture(BPicture* picture, [..]);

RS5: 1 bit alpha - only fully opaque or fully transparent
Haiku: 8 bit alpha — allows full pixel alpha masking

AlphaMask

Clipping Examples

[] Test |

n

No clipping

Clipping Region

[] Test [] Test

L

Original ConstrainClippingRegion()

Clipping Mask

-,

n

Original BPicture (Alpha Mask) ClipToPicture()

Transforms and Clipping

R5 transforms

When recalculating the l _
clipping region, the R5 Clipping (BRegion)
transforms are applied...

Transforms and Clipping

When recalculating the
clipping region, the R5

transforms are applied...

...however, clipping
regions know nothing

about affine transforms.

R5 transforms

!

Clipping (BRegion)

l

Rasterization

BAffineTransform

AlphaMask

Painter

AGG

R5 transforms... ConstrainClippingRegion()

(] Test | [Test |

L

Test
U [1 Test

SetScale()

BAffineTransform... ConstrainClippingRegion()

(] Test | [Test |

L

[1 Test

[1 Test |

SetTransform()

BAffineTransform...

[] Test [] Test

"

SetTransform() SetTransform() +
ConstrainClippingRegion()

Clipping Wish List

Fast for BRegion clipping

Allow complex clipping shapes

W 1

Always intersecting, no state push required

RFC: New Clipping API

void BView::ClipToRect(BRect rect);

void BView::ClipToInverseRect(BRect rect);

void BView::ClipToShape(BShape* shape);
void BView::ClipToInverseShape(BShape* shape);

Works with affine transforms

Automatically selects between fast region clipping and
alpha masks (prefers region when possible)

Directly clip to shape without needing BPicture
“Inverse” variants to clip out

Always intersecting, no state push required

All variants can be freely mixed

Alpha Masks

AGG
Painter

ServerPicture
DrawState *—— AlphaMask <

Bits

Alpha Masks

AGG
Painter

DrawState *—— AlphaMask ¢—— Bits

N

UniformAlphaMask VectorAlphaMask < >
A / \
ShapeAlphaMask PictureAlphaMask

« Now independent of view size, _
view origin change only reattaches BShape ServerPicture
buffer — no rerendering!

- Stacked alpha masks intersect _ _)
their bounding boxes PictureBoundingBoxPlayer

Clipping and BAffineTransform

A

SetTransform() SetTransform() +
ClipToRect()

Introduction

Transparency Layers

Transforms and Clipping

Little Things Add Up

Outlook

Little Things (1): Bitmap Painter

Optimized variants in Painter

Scale? Resampler?

Affine transform?

Color Space? Drawing Mode?

9
Alpha Mask? SIMD?

 Factored out class BitmapPainter and classes for optimized variants
* New optimized paths for:
« unscaled B_ OP_COPY with alpha mask

* bilinear with pixel alpha overlay

Little Things (2): Drawing Modes

drawing modes |
Datei Fenster Attribute ‘fj
~* Name

<_* DrawingMode.h
<_* DrawingModeAdd.h
<_* DrawingModeAddSUBPIX.h
<+ DrawingModeAlphaCCh
& DrmvingModeAIphACCSUBPIX PixelFormat selects function pointers for blending
< DrawingModeAlphaCO.h
. DrawingModeAlphaCO5olid.h
< DrawingModeAlphaCOSIHSUBPIXH pixels/lines/spans based on drawing mode, fill pattern, ...
< DrawingModeAlphaCO5SUBPIXh
<+ DrawingModeAlphaPCh
<_* DrawingModeAlphaPCSalid.h
<_» DrawingModeAlphaP CSUBPIX.h
<_» DrawinghodeAlphaP 0.h
< DrawingModeAlphaP05alid.h
~+ DrawinghodeAlphaPOSolid SUBPIX.h H H
A Added new functions for pixel alpha composite with solid fill
<_* DrawingModeBlend.h
<_* DrawingModeBlendSUBPLIX.h
<+ DrawingModeCopy.h COIOr (no pattern) '
<_» DrawingModeCapySalid.h
< DrawingModeCopySolidSUBPIX.h .
& OrevinghlodeCopySUBPIX ... considerable speedup
<* DrawingModeCopyTexth
< DrawingModeCopyTextSUBPIX.h
<_* DrawingModeErase.h
<_* DrawingModeEraseSUBPIX.h
<_» DrawingModelnverth
< DrawingModelnvertSUBPIX.h
< DrawingModeMax.h
< DrawingModeMaxSUBPIX.h
.+ DrawingModeMin.h
<. DrawingModeMinSUBPIX.h
<_* DrawingModeOver.h
<_» DrawinghodeOverSolid.h
<2 DrawingModeOverSolidSUBPIX.h
<+ DrawingModeQverSUBPIX.h
<_* DrawingModeSelecth
<* DrawingModeSelectSUBPIXHh
<_* DrawingMode5Subtract.h
<. DrawingModeSubtractSUBPIX.h
<+ PixelFormat.cpp
<+ PixelFormat.h

42 Objekta < »

Little Things Can Be Hard To Find

[] Terminal : home:-- [|

Terminal Bearbeiten Einstellungen

~= fprofile

Usage: profile [=options®] [=command line>]

Profiles threads by periodically sampling the program counter. There are
two different modes: One profiles the complete system. The other starts
a program and profiles that and (eptionally) its children. When a thread
terminates, a list of the functions where the thread was encountered is

printed.
Options:

-a, --all - Profile all teams.

-c - Don"t profile child threads. Default is to
recursively profile all threads created by a profiled
thread.

-C - Don"t profile child teams. Default is to recursively
profile all teams created by a profiled team.

-f - Always analyze the full caller stack. The hit count
for every encountered function will be incremented.
This increases the default for the caller stack depth é awesome
("-s") to 64.

-h. --help - Print this usage info.

-i <interval> - Use a tick interval of <interval> microseconds.
Default is 1000 (1 ms). On a fast machine, a shorter
interval might lead to better results, while it might
make them worse on slow machines.

-k - Don't check kernel images for hits.

-1 - Also profile loading the executable.

-0 <output= - Print the results to file <output=.

-r, --recorded - Don't profile, but evaluate a recorded kernel profile
data.

-5 <depth=> - Humber of return address samples to take from the

caller stack per tick. If the topmost address doesn't
hit a known image, the next address will be matched
(and so on).

-5 - Don"t output results for individual threads, but
produce a combined output at the end.

-v =directory® - Create valgrind/callgrind output. <directory> is the
directory where to put the output files.

Performance can be non-intuitive — always measure

Demo time!

Introduction

Transparency Layers

Transforms and Clipping

Little Things Add Up

Some ldeas

 Pre-multiplied alpha

« SIMD

» Cache for alpha masks

» Cache for scaled bitmaps

* Refactoring
» Extract more things from Painter
« Unify clipping, transforms

» Unit tests!

Thank you!

Questions?

