
Improving app_server for WebKit

Julian Harnath

<julian.harnath@rwth-aachen.de>

Introduction

Transparency Layers

Outlook

Transforms and Clipping

Little Things Add Up

Introduction

Transparency Layers

Outlook

Transforms and Clipping

Little Things Add Up

app_server

Application

Applications on Haiku

Server link

Server

Clients

app_server

Application

Applications on Haiku

Server link

BApplication BWindow

Server

Clients

ServerApp ServerWindow

Interface Kit

Getting to Painter (1)

A very incomplete overview…

ServerWindow

MessageLooper

Receives

app_server

messages

Getting to Painter (1)

A very incomplete overview…

ServerWindow

Window View

Canvas

MessageLooper

DrawState

OffscreenCanvas

Receives

app_server

messages

“Window on

screen”

State, coordinate

conversion, …

Entries of

state stack

Drawing into offscreen

buffer (e.g. BView

attached to BBitmap)

Getting to Painter (1)

A very incomplete overview…

ServerWindow

Window View

Canvas

MessageLooper

DrawState

OffscreenCanvas

Receives

app_server

messages

“Window on

screen”

State, coordinate

conversion, …

Entries of

state stack

Drawing into offscreen

buffer (e.g. BView

attached to BBitmap)

DrawingEngine

Getting to Painter (1)

A very incomplete overview…

ServerWindow

Window View

Canvas

MessageLooper

HWInterface Painter

DrawState

OffscreenCanvas

Receives

app_server

messages

“Window on

screen”

State, coordinate

conversion, …

Entries of

state stack

“Graphics card”

Frame buffer pointer,

drawing using hardware

(simple primitives), …

Draws

things!

Drawing into offscreen

buffer (e.g. BView

attached to BBitmap)

DrawingEngine

AGG
(in software)

Getting to Painter (2)

Drawing a rectangle…

BView::FillRect()

Client

app_server

Getting to Painter (2)

Drawing a rectangle…

BView::FillRect()

Client

app_server

ServerWindow

Message: AS_FILL_RECT with BRect payload

Getting to Painter (2)

Drawing a rectangle…

BView::FillRect()

Client

app_server

ServerWindow

Message: AS_FILL_RECT with BRect payload

View::PenToScreenTransform() Transform rect to screen coordinates

Window::GetDrawingEngine() Get the engine of this window

Getting to Painter (2)

Drawing a rectangle…

BView::FillRect()

Client

app_server

ServerWindow

Message: AS_FILL_RECT with BRect payload

View::PenToScreenTransform() Transform rect to screen coordinates

Window::GetDrawingEngine() Get the engine of this window

DrawingEngine::FillRect()

Painter::ClipRect()

Painter::FillRect()

HWInterface::FillRegion()

State?

HW accel?

Introduction

Transparency Layers

Outlook

Transforms and Clipping

Little Things Add Up

Transparency Layers

Transparency layer

Global alpha

α = 0.7

The Workaround

(1) Create a new empty BBitmap and attach BView

(2) Draw into bitmap

(3) Draw bitmap onto background with added transparency (via

ClipToPicture), throw away BBitmap

The Problem

(1) Create a new empty BBitmap and attach BView

Bad: we don’t know the size of the drawing yet, so we have to

create the BBitmap at view size.

In WebPositive, this is almost the whole browser window size!

Worse: attaching a BView to a BBitmap spawns an offscreen

window thread inside app_server.

On some websites, WebKit likes to use many layers, especially

when doing many renders during scrolling.

A Better Solution

Let app_server know what we’re doing!

A Better Solution

(1) Client: start layer; then

draw things.

app_server does not draw,

and instead just writes

down the list of operations.

Let app_server know what we’re doing!

1. Draw circle

2. Draw rectangle

3. Draw triangle

A Better Solution

(1) Client: start layer; then

draw things.

app_server does not draw,

and instead just writes

down the list of operations.

Let app_server know what we’re doing!

1. Draw circle

2. Draw rectangle

3. Draw triangle

(2) Client: end layer.

app_server looks at the

operations written down and

figures out the (approx.)

bounding box of this drawing,

without actually drawing it

A Better Solution

(1) Client: start layer; then

draw things.

app_server does not draw,

and instead just writes

down the list of operations.

Let app_server know what we’re doing!

1. Draw circle

2. Draw rectangle

3. Draw triangle

(2) Client: end layer.

app_server looks at the

operations written down and

figures out the (approx.)

bounding box of this drawing,

without actually drawing it

(3) Create UtilityBitmap of

bounding box size and clear

it. UtilityBitmap is

app_server-internal and

spawns no new thread!

A Better Solution

(1) Client: start layer; then

draw things.

app_server does not draw,

and instead just writes

down the list of operations.

Let app_server know what we’re doing!

1. Draw circle

2. Draw rectangle

3. Draw triangle

(2) Client: end layer.

app_server looks at the

operations written down and

figures out the (approx.)

bounding box of this drawing,

without actually drawing it

(3) Create UtilityBitmap of

bounding box size and clear

it. UtilityBitmap is

app_server-internal and

spawns no new thread!

(4) Draw into UtilityBitmap

from written down operations

A Better Solution

(1) Client: start layer; then

draw things.

app_server does not draw,

and instead just writes

down the list of operations.

Let app_server know what we’re doing!

1. Draw circle

2. Draw rectangle

3. Draw triangle

(2) Client: end layer.

app_server looks at the

operations written down and

figures out the (approx.)

bounding box of this drawing,

without actually drawing it

(3) Create UtilityBitmap of

bounding box size and clear

it. UtilityBitmap is

app_server-internal and

spawns no new thread!

(4) Draw into UtilityBitmap

from written down operations
(5) Draw bitmap with

transparency (via AlphaMask)

and discard it

A Better Solution

(1) Client: start layer; then

draw things.

app_server does not draw,

and instead just writes

down the list of operations.

Let app_server know what we’re doing!

1. Draw circle

2. Draw rectangle

3. Draw triangle

(2) Client: end layer.

app_server looks at the

operations written down and

figures out the (approx.)

bounding box of this drawing,

without actually drawing it

(3) Create UtilityBitmap of

bounding box size and clear

it. UtilityBitmap is

app_server-internal and

spawns no new thread!

(4) Draw into UtilityBitmap

from written down operations
(5) Draw bitmap with

transparency (via AlphaMask)

and discard it

Problem solved!

BPicture Saves the Day

1. Draw circle

2. Draw rectangle

3. Draw triangle

ServerPicture PictureBoundingBoxPlayer

Details to observe: drawing offset, transforms, clipping, draw state, drawing mode, …

Layer API

void BView::BeginLayer(uint8 opacity);

void BView::EndLayer();

Introduction

Transparency Layers

Outlook

Transforms and Clipping

Little Things Add Up

Transforms: R5

void BView::SetOrigin(float x, float y);

void BView::SetScale(float ratio);

Translation, Scaling

BAffineTransform (Haiku)



















































11001

'

'

y

x

yyy

xxx

y

x

p

p

tssh

tshs

p

p

void BView::SetTransform(BAffineTransform transform);

BAffineTransform BView::Transform() const;

BAffineTransform

Translation, Scaling/Mirroring, Rotation, Shearing

BAffineTransform:: ...

 AffineTranslation()

 AffineRotation()

 AffineScaling()

 AffineShearing()

BAffineTransform (Haiku)



















































11001

'

'

y

x

yyy

xxx

y

x

p

p

tssh

tshs

p

p

pBApABp


)()(

Composition

void BView::SetTransform(BAffineTransform transform);

BAffineTransform BView::Transform() const;

BAffineTransform

Translation, Scaling/Mirroring, Rotation, Shearing

BAffineTransform:: ...

 Multiply(), PreMultiply()

 TranslateBy(), ScaleBy(), RotateBy(), ShearBy()

 ...

BAffineTransform:: ...

 AffineTranslation()

 AffineRotation()

 AffineScaling()

 AffineShearing()

Clipping

void BView::ConstrainClippingRegion(BRegion* region);

R5 API: clipping region

R5: 1 bit alpha – only fully opaque or fully transparent

Haiku: 8 bit alpha – allows full pixel alpha masking

void BView::ClipToPicture(BPicture* picture, […]);

void BView::ClipToInversePicture(BPicture* picture, […]);

R5 API: clipping mask

fast

AlphaMask

No clipping

Clipping Examples

ConstrainClippingRegion()

Clipping Region

Original

ClipToPicture()

Clipping Mask

BPicture (Alpha Mask) Original

Transforms and Clipping

R5 transforms

Clipping (BRegion)

When recalculating the

clipping region, the R5

transforms are applied…

Rasterization

Transforms and Clipping

R5 transforms

Clipping (BRegion)

When recalculating the

clipping region, the R5

transforms are applied…

…however, clipping

regions know nothing

about affine transforms.

AlphaMask

BAffineTransform Painter

AGG

SetScale()

ConstrainClippingRegion() R5 transforms…

SetTransform()

ConstrainClippingRegion() BAffineTransform…

SetTransform() SetTransform() +

ConstrainClippingRegion()

BAffineTransform…

Clipping Wish List

Fast for BRegion clipping

Allow complex clipping shapes

Always intersecting, no state push required

RFC: New Clipping API

void BView::ClipToRect(BRect rect);

void BView::ClipToInverseRect(BRect rect);

void BView::ClipToShape(BShape* shape);

void BView::ClipToInverseShape(BShape* shape);

• Works with affine transforms

• Automatically selects between fast region clipping and

alpha masks (prefers region when possible)

• Directly clip to shape without needing BPicture

• “Inverse” variants to clip out

• Always intersecting, no state push required

• All variants can be freely mixed

Alpha Masks

AlphaMask

Painter

AGG

DrawState

ServerPicture

Bits

Alpha Masks

AlphaMask

Painter

AGG

DrawState

UniformAlphaMask VectorAlphaMask<>

PictureAlphaMask ShapeAlphaMask

ServerPicture

Bits

BShape

Opacity

PictureBoundingBoxPlayer

• Now independent of view size,

view origin change only reattaches

buffer – no rerendering!

• Stacked alpha masks intersect

their bounding boxes

SetTransform() SetTransform() +

ClipToRect()

Clipping and BAffineTransform

Introduction

Transparency Layers

Outlook

Transforms and Clipping

Little Things Add Up

Little Things (1): Bitmap Painter

Optimized variants in Painter

Scale?

Affine transform?

Alpha Mask?

Color Space?
Drawing Mode?

Resampler?

• Factored out class BitmapPainter and classes for optimized variants

• New optimized paths for:

• unscaled B_OP_COPY with alpha mask

• bilinear with pixel alpha overlay

SIMD?

Little Things (2): Drawing Modes

PixelFormat selects function pointers for blending

pixels/lines/spans based on drawing mode, fill pattern, …

Added new functions for pixel alpha composite with solid fill

color (no pattern)…

… considerable speedup

Little Things Can Be Hard To Find

Performance can be non-intuitive – always measure

 awesome

Demo time!

Introduction

Transparency Layers

Outlook

Transforms and Clipping

Little Things Add Up

Some Ideas

• Pre-multiplied alpha

• SIMD

• Cache for alpha masks

• Cache for scaled bitmaps

• Refactoring

• Extract more things from Painter

• Unify clipping, transforms

• Unit tests!

Thank you!

Questions?

