
Programming with Haiku

Lesson 13

Written by DarkWyrm

All material © 2010 DarkWyrm

Queries

Haiku's parent operating system, BeOS, was far ahead of its time and possessed advanced
features that were missing from Windows 95 and MacOS, the competing operating systems
of its day. In addition to extended file attributes, it also provided query support. Queries are
lightning-fast file searches which leverage Haiku's unique filesystem: BFS. While other
operating systems were recursively searching every single file for matches within filenames
and the like, BeOS users were using queries to organize MP3s, contacts, e-mail, and photos.
Haiku users still do all of this, but it's often left underused except by advanced users and
developers. Even now more popular operating systems cannot search for files as quickly and
easily with the same power without taxing the rest of the operating system.

Query Syntax

Queries are usually run via Tracker's Find window. Most of them use the by name or by
attribute modes. Hardcore Haiku users love the by formula setting, which uses the actual
syntax of a filesystem query without all the niceties. Fortunately, the syntax of a query is
relatively simple and can be learned quickly by entering a test query in one of the other
modes and then changing to the formula mode.

Let's start with a simple query: find all new e-mail.

1. Open Tracker's Find window by pressing Command-F or choosing Find... from the
Deskbar or the File menu in any Tracker window.

2. Instead of leaving it set to All files and folders, change the file type to E-mail in the
text submenu.

3. Change by name to by attribute.
4. Now click on the menu field marked Name, choose is from the Status submenu, and

type the word new into the text box. This is what the query will search for, but take a
look at the query's real syntax by changing the mode to by formula.

Having done all of this, you will see the following text in the Find window:

((MAIL:status=="[nN][eE][wW]")&&(BEOS:TYPE=="text/x-email"))

For those unfamiliar with regular expressions, a set of characters within a pair of square
brackets matches any single character in that set. [nN] matches the letter N, regardless of
case, for example. This query will match any e-mail which has a status attribute of new
without paying any attention to capitalization. Queries are case-sensitive, but any query
generated with the name or attribute modes are converted so that they are not case-sensitive.

Queries can be quite complicated, but they don't have to be that way. A simpler query which
would get the job done as well as the one above could look like this:

MAIL:status=="[nN]ew"

Since e-mail files are the only files which have the MAIL:status attribute, just searching for
the attribute makes more sense.

If a query is to be run on a particular attribute, it must be indexed. The Terminal commands
lsindex, rmindex, and mkindex manipulate and list which attributes are indexed. Note that
when an attribute is added to the filesystem's index with the mkindex command, all files
having that attribute are not automatically found by a query. They must be reindexed. This
can be accomplished by copying the file somewhere and then copying it back or using the
reindex Terminal command. A word of warning to the wise: don't be afraid to add an
attribute to the index, but don't go crazy over them, either. Adding lots of them will slow
down overall performance of all query-based searches.

Using BQuery

There are two ways that BQuery can be used to run a query. The simpler way is really easy if
you understand the actual query syntax. The more complicated way is more flexible, but not
necessary in most cases. We'll examine the simpler method first. Here is some very basic
code for running a query on the boot volume:

#include <Query.h>
#include <stdio.h>
#include <String.h>
#include <VolumeRoster.h>
#include <Volume.h>

int
main(void)
{

// Get a BVolume object which represents the boot volume. A BQuery
// object will require one.
BVolumeRoster volRoster;
BVolume bootVolume;
volRoster.GetBootVolume(&bootVolume);

// A quick summary for using BQuery:
// 1) Make the BQuery object.
// 2) Set the target volume with SetVolume().
// 3) Specify the search terms with SetPredicate().
// 4) Call Fetch() to start the search
// 5) Iterate over the results list using GetNextEntry(),
// GetNextRef(), or GetNextDirents().

BString predicate("MAIL:subject == *");
BQuery query;
query.SetVolume(&bootVolume);
query.SetPredicate(predicate.String());
if (query.Fetch() == B_OK)
{

printf("Results of query \"%s\":\n", predicate.String());
entry_ref ref;
while (query.GetNextRef(&ref) == B_OK)

printf("\t%s\n",ref.name);
}

}

With code this easy, you would think that queries would be used more in third party
applications!

The more flexible method is more complicated because of the way that the query is
assembled. It uses a token stack – chaining together individual components of the search
terms in a specific order called Reverse Polish Notation. Each element is added to the
predicate using methods like PushOp(), and PushAttr().

The Reverse Polish Notation (RPN) entry system dates back to the 1950s, but it can still be
found in many different areas, particularly financial and scientific calculators. Also known as
Postfix notation, it groups mathematical operands together and places the operator at the
end. For example, what we would normally write as (5 + 6) * 3 becomes 5 6 + 3 * in
RPN. Parentheses are not necessary if the precedence of mathematical operators is upheld.
RPN is very easy for computers, but it can be a real headache for people, having had
algebraic entry ingrained into us since elementary school. Luckily for us, queries normally
have a simple syntax, so it isn't that much more difficult to construct a query this way.

Here are the methods which are used to construct queries using RPN:

void PushAttr(const char *attrName);
void PushOp(query_op operator);

void PushUInt32(uint32 value);
void PushInt32(int32 value);
void PushUInt64(uint64 value);
void PushInt64(int64 value);
void PushFloat(float value);
void PushDouble(double value);
void PushString(const char *string, bool ignoreCase = false);

The top two methods are for adding attribute names and comparison operators; the rest are
for adding values of different types.

The operators which can be used with PushOp() are as follows:

Operator Operation

B_EQ ==

B_NE !=

B_GT >

B_LT <

B_GE >=

B_LE <=

B_CONTAINS The same as the regular expression *value*

B_BEGINS_WITH The same as the regular expression *value

B_ENDS_WITH The same as the regular expression value*

B_AND &&

B_OR ||

B_NOT !

Modifying the previous query example to use RPN results in this code:

#include <Entry.h>
#include <Query.h>
#include <stdio.h>
#include <String.h>
#include <Volume.h>
#include <VolumeRoster.h>

int
main(void)
{

// Get a BVolume object which represents the boot volume. A BQuery
// object will require one.
BVolumeRoster volRoster;
BVolume bootVolume;
volRoster.GetBootVolume(&bootVolume);

// A quick summary for using BQuery:
// 1) Make the BQuery object.
// 2) Set the target volume with SetVolume().
// 3) Specify the search terms with Push*().
// 4) Call Fetch() to start the search
// 5) Iterate over the results list using GetNextEntry(),
// GetNextRef(), or GetNextDirents().

BString predicate("MAIL:subject == *");
BQuery query;
query.SetVolume(&bootVolume);
query.PushAttr("MAIL:subject");
query.PushString("*");
query.PushOp(B_EQ);
if (query.Fetch() == B_OK)
{

printf("Results of query \"%s\":\n", predicate.String());
entry_ref ref;
while (query.GetNextRef(&ref) == B_OK)

printf("\t%s\n",ref.name);
}

}

Be aware that the two techniques cannot be mixed. Any search terms added to a BQuery by
way of a Push method takes precedence over anything passed to SetPredicate().

Searching in Real Time Using Live Queries

The above code examples use queries statically – the results are read and do not change, but a
query can also do live updates. Live queries send update messages to your program when a
file suddenly matches the query or disappears off the face of the earth.

Making a query live is easy: pass a valid BHandler or BLooper to the SetTarget() method
before calling Fetch(). Handling updates requires some finesse, though. When an update
message is received, it may be while you're still busy reading the results using one of the
GetNext methods, so message handling needs to be synchronized with the reading of the
results. Also, do be careful that the BMessenger object passed to SetTarget() is not deleted or
allowed to go out of scope until you are done with your query. Deleting it any sooner will
cause update messages to not be sent any more.

The query update message has the identifier B_QUERY_UPDATE. When one is received, you
need to then read the 32-bit integer field opcode to find out what other data fields the
message contains.

Opcode B_ENTRY_CREATED:

Field Name Type Description

opcode int32 Identifier for the message, equaling B_ENTRY_CREATED in this
case.

name string The name of the new entry

directory int64 The ino_t number for the directory in which the entry resides.

device int32 The dev_t number of the device on which the entry exists.

node int64 The ino_t of the entry itself.

Opcode B_ENTRY_DELETED:

Field Name Type Description

opcode int32 Identifier for the message, equaling B_ENTRY_DELETED in this
case.

directory int64 The ino_t number for the directory in which the entry
formerly resided.

device int32 The dev_t number of the device on which the entry used to
exist.

node int64 The ino_t of the removed entry.

At first glance, you might think that live queries are almost always the best choice. There is a
drawback to using them: there is some overhead which must be maintained for these
messages to actually be useful. All of the information which is obtained from the creation
messages – the name, node, and so forth – needs to be stored away because there is no name
field sent for B_ENTRY_DELETED. This critical piece of information makes it impossible to
create an entry_ref, which happens to be the most common way to store the location of a
file or directory outside of strings.

When using a live query, store away the information gleaned from whichever GetNext
method you use and do the same for any B_ENTRY_CREATED messages. This way, if and when
you receive B_ENTRY_DELETED messages you will be able to look up the proper item from the
information that you are given.

Concluding Thoughts

Queries are easy to use, fast, and powerful. If you have to look up a collection of files on the
system, such as all people files in the case of a contact manager, they provide an easy way of
finding and retrieving files. Keep them in mind as you work on projects – you may find a
new use for them which blows people's minds.

Going Further

• Run the lsindex command in the Terminal. Most, if not all of them, are pretty self-
explanatory. What uses can you think of for some of them?

• If you were going to write a music organizer, how could you use queries and
attributes, both indexed and not, to get the most power out of the app as possible?

• How could you go about leveraging queries in these parts of a personal organizer app:
contacts, appointments, tasks, and e-mail?

	Queries
	Query Syntax
	Using BQuery
	Searching in Real Time Using Live Queries
	Concluding Thoughts
	Going Further

