
Programming with Haiku

Lesson 14

Written by DarkWyrm

All material © 2010 DarkWyrm

Monitoring Nodes

Nodes are dumb. Check the Be Book – you'll find the exact same thought there, too. They're
always lost because they don't know where they are in the filesystem. Truth be told, though,
it's because BNode objects are concerned with an entry's data, not metadata like its name and
location. They are also incredibly handy because we can ask the operating system to notify us
of changes in the filesystem, such as the mounting and unmounting of volumes, the creation
of new files, the modification of a file's attributes, or news of other interesting file-related
events.

Setting up node monitoring is relatively easy, but first you will need to decide on the kinds of
changes for which you wish to receive notifications. There are five types of changes that can
be watched.

Mode Description

B_WATCH_NAME Watch for changes in file names, including moving or deleting nodes.

B_WATCH_STAT Watch a file's features manipulated by the stat() function, including
creation and modification times, size, permissions, and ownership.

B_WATCH_ATTR Watch the file's attributes, including adding or removing them.

B_WATCH_DIRECTORY This only works for directories. It will watch for the creation,
deletion, or renaming of entries in the directory. If used on a file, it
won't do anything.

B_WATCH_ALL Watches for everything described above.

B_WATCH_MOUNT Instead of watching a file or directory, using this flag will cause you
to be notified of volumes being mounted or unmounted. The nref
argument isn't needed if this is the only flag used in a watch_node()
call. B_WATCH_ALL doesn't include this flag.

B_STOP_WATCHING Turns off watching on the node pointed to by nref.

watch_node(const node_ref *nref, uint32 flags, BMessenger messenger);
watch_node(const node_ref *nref, uint32 flags, const BHandler *handler,

const BLooper *looper = NULL);

These calls start the node monitor to watch the node pointed to by nref for
changes specified in flags. Messages are sent by the BMessenger messenger or
to the BHandler or BLooper specified. Note that the target of the BMessenger
must be within the application calling watch_node(). The system has only 4096
monitoring slots, so don't go overboard. Also, each call to watch_node()
consumes a slot even if the node is already watched by the monitor.

status_t stop_watching(BMessenger messenger);
status_t stop_watching(const BHandler *handler,

const BLooper *looper = NULL);

These functions end monitoring for any nodes for which messages are sent to the
specified target, i.e. if all node monitoring messages are sent to the same target,
this frees all slots in one fell swoop.

The Node Monitor's Update Messages

As nice as live updates are to have in your application, handling the Node Monitor's update
messages can get a bit complicated. The reason for this is a combination of handling the
various update messages and mapping them to appropriate actions for your application.

The update messages themselves are strikingly similar to update messages sent by live
queries. The what field of a node monitor message is B_NODE_MONITOR. Checking the opcode
field of this message gives you more information about what kind of update you're receiving.
The opcode is an int32.

Opcode B_ENTRY_CREATED

Conditions for receiving:
• B_WATCH_DIRECTORY on directory in which the node was created

Field Type Description

name string Name of the new entry.

directory int64 The node number (ino_t) for the new entry's parent directory.

device int32 The id (dev_t) of the volume on which the entry was created.

node int64 The node number of the new entry.

If you watch a directory, this is one possible message you'll receive. Of all of the
update messages, this one is the most helpful. The name, device, and directory
fields can be used to construct an entry_ref which points to the new entry.
device and node can be used to create a node_ref, useful if you want to monitor
the new entry's node. device and directory can be used to also create a
node_ref, but one which points to the entry's parent directory and is suitable for
initializing a BDirectory object. If you plan on handling B_ENTRY_REMOVED
opcodes, you'd better make both an entry_ref and a node_ref for the new entry
and stash it away somewhere for later use.

Opcode B_ENTRY_REMOVED

Conditions for receiving:
• B_WATCH_DIRECTORY on directory in which the node resided
• B_WATCH_NAME on the former node

Field Type Description

directory int64 The node number (ino_t) for the former entry's parent
directory.

Field Type Description

device int32 The id (dev_t) of the volume from which the entry was
removed.

node int64 The node number of the former entry. Of course, because the
node no longer exists, it is invalid and useless except for
comparing against cached values.

Notifications for removed entries require extra work to be useful, sadly. The
problem lies in the fact that there is no name field sent, preventing construction of
an entry_ref, which just happens to be the most common way of storing an
entry's location without consuming a file descriptor. As a result, if you plan on
handling removal notifications, you will need to save away both a node_ref and
an entry_ref for each entry on the filesystem which you wish to track. There
will be more on this later.

Opcode B_ENTRY_MOVED

Conditions for receiving:
• B_WATCH_DIRECTORY on the source or destination directory
• B_WATCH_NAME on the node itself

Field Type Description

name string Name of the moved entry.

from
directory

int64 The node number (ino_t) for the entry's source directory.

to directory int64 The node number (ino_t) for the entry's destination directory.

device int32 The id (dev_t) of the volume on which the entry resides.

node int64 The node number of the moved entry. This doesn't change even
though the entry has moved.

Handling B_ENTRY_MOVED is almost the same as B_ENTRY_CREATED except for the
changes in directory field names.

Opcode B_STAT_CHANGED

Conditions for receiving:
• B_WATCH_STAT on the node itself

Field Type Description

device int32 The id (dev_t) of the volume on which the entry resides.

node int64 The node number of the entry.

Opcode B_ATTR_CHANGED

Conditions for receiving:
• B_WATCH_ATTR on the node itself

Field Type Description

device int32 The id (dev_t) of the volume on which the entry resides.

node int64 The node number of the entry.

Changes in stat data are as big of a pain to handle as entry removals and for the
same reason: having to stash away node_refs. The Be Book even recommends
storing away a copy of each entry's stat data, too, which wouldn't be a bad idea
as long as you're careful about memory usage. Handling attribute changes are
pretty much the same thing.

Opcode B_DEVICE_MOUNTED

Conditions for receiving:
• B_WATCH_MOUNT flag used with watch_node().

Field Type Description

device int32 The id (dev_t) of the volume on which the new volume's mount
point resides

new device int32 The id (dev_t) of the new volume.

node int64 The node number of the entry.

Opcode B_DEVICE_UNMOUNTED

Conditions for receiving:
• B_WATCH_MOUNT flag used with watch_node().

device int32 The id (dev_t) of the former volume.

Volume-related notifications don't require very much effort, thankfully. Do be
aware that dev_t numbers are apparently recycled fairly often, but the only time
you'll ever need it is if you've been tracking volumes and keeping a copy of each
volume's dev_t identifier stored away somewhere.

Handling Update Messages

At this point you may be wondering how all of these messages fit together or how to use
them in your own programs. The work itself isn't very difficult, but it can be tedious. The way
node monitoring fits into your program largely depends on what kind of program you're
writing and the purpose for which you want notifications. If you are working on a file
manager of some kind, you'll probably be monitoring everything, including volume-related
events. This is definitely the more complicated scenario. More likely, though, you'll just be
monitoring the node for a document your program is editing, in which case your job is

relatively easy. We'll be looking at the simpler of the two cases since the file manager
scenario is very implementation-specific and is just an extension of the other.

Let's say for this instance that we are writing a simple text editor. Architecturally, we'll say
that each actual document is encapsulated by a Document class and BView subclass has been
created for the editor, predictably called DocumentEditor. What we wish to accomplish with
node monitoring is to be informed of outside changes to the document currently being edited.

The changes we will need to handle in this case are removal, moving, and stat changes. It's
possible to merely ignore removals, but we want to ensure that the user's data is kept safe – if
the user didn't have any changes made and closed the window, the contents of the document
stored on the disk and in memory would be lost, potentially leading to frustration and
gnashing of teeth. It would be better to ask if the user wishes to re-save the document.

Setup Before Watching Files

The removal and stat notifications received from the node monitor only have enough
information for creating node_ref structures, so our document class will need to store a stat
structure and a node_ref. The Document class could look something like this:

#include <Node.h>
#include <sys/stat.h>

class Document
{
public:

Document(const char *path);
~Document(void);

const char *GetName(void) const;

status_t Load(const char *path);
void NodeMoved(const entry_ref &ref);

node_ref GetNodeRef(void) const;
entry_ref GetRef(void) const;
struct stat GetStatData(void) const;

// various methods here

private:
entry_ref fRef;
node_ref fNodeRef;
struct stat fStatData;

// More document-related properties here
};

Keeping an entry_ref around is a cheap way of storing the location of the document without
using a file descriptor. fNodeRef and fStatData are kept around for node monitoring
purposes. The Load() method will need to set these properties if everything else about the
document has been successful. NodeMoved() is necessary because the owning
DocumentEditor instance will receive the notifications from the Node Monitor and will need
to pass on information so that in the event that the user – or something else, for that matter –
moves the file while it is open, the editor doesn't try to save the document in the old location.

The Load() method could look something like this:

Document::Load(const char *path)
{

BFile file(path, B_READ_ONLY);
if (file.InitCheck() != B_OK)

return file.InitCheck();

// A bunch of data loading muck goes here. Nothing to see here.
// Move along, now. ;-)

// Assuming that everything went well in loading the document,
// let's save the info about the file on the disk.
BEntry entry(path);
entry.GetRef(&fRef);
entry.GetNodeRef(&fNodeRef);
entry.GetStat(&fStatData);

}

There! Now that the initial setup has been taken care of, we can move on to the
DocumentEditor class. We'll just say that it has a Load() method, too.

#include <NodeMonitor.h>

status_t
DocumentEditor:::Load(const char *path)
{

status_t status = fDocument.Load(path);
if (status != B_OK)

return status;

// Document loaded OK, so set up node monitoring. BView inherits
// from BHandler, so this is an easy call.
node_ref nref = fDocument.GetNodeRef();
watch_node(&nref, B_WATCH_NAME | B_WATCH_STAT, this);

}

Fielding Update Messages

With node monitoring now set up, all that is left is to tweak MessageReceived() to handle
the update messages.

DocumentEditor::MessageReceived(BMessage *msg)
{

switch (msg->what)
{

// A bunch of other message-handling cases here

case B_NODE_MONITOR:
{

// We'll use a separate function to prevent making
// MessageReceived() any messier than it already tends
// to be.
HandleNodeMonitoring(msg);
break;

}
default:

{
BView::MessageReceived(msg);
break;

}
}

}

void
DocumentEditor::HandleNodeMonitoring(BMessage *msg)
{

int32 opcode;
if (msg->FindInt32("opcode", &opcode) != B_OK)

return;

switch (opcode)
{

case B_ENTRY_REMOVED:
{

// Document has been lost on disk. Alert user.
BString errmsg;
errmsg += fDocument.GetName();
errmsg << " has been deleted on the disk. Do you wish "

<< "to re-save it to prevent data loss?";
BAlert *alert = new BAlert("MyCoolEditor",

errmsg.String(),
"No", "Yes");

if (alert->Go() == 1)
fDocument.Save();

break;
}
case B_ENTRY_MOVED:
{

dev_t device;
ino_t destDir;
BString name;
if (msg->FindInt64("to directory", &destDir) == B_OK &&

msg->FindInt32("device", &device) == B_OK) &&
msg->FindString("name", &name) == B_OK)

{
entry_ref newRef;
newRef.setname(name.String());
newRef.device = device;
newRef.dir = destDir;
fDocument.NodeMoved(ref);

}
break;

}
case B_STAT_CHANGED:
{

// Check to see what has changed. We'll ignore (for now)
// changes in permissions, but a change in
// modification time means the file has changed, in which
// case we'll ask about reloading from disk.
struct stat oldStat = fDocument.GetStatData();

struct stat newStat;
entry_ref ref = fDocument.GetRef();
BFile file(&ref);

file.GetStat(&newStat);
if (newStat.st_mtime != oldStat.st_mtime)
{

BString errmsg;
errmsg += fDocument.GetName();
errmsg << " has been changed on the disk. Do you "

<< "wish to reload it??";
BAlert *alert = new BAlert("MyCoolEditor",

errmsg.String(),
"No", "Yes");

if (alert->Go() == 1)
{

BMessage refMsg(B_REFS_RECEIVED);
refMsg.AddRef("refs", fDocument.GetRef());
Window()->PostMessage(refMsg);

}
}

break;
}
default:

break;
}

}

In case you're wondering, Document::NodeMoved() just uses the same BEntry code as in
Load() to update the document's node_ref and stat data.

Going Further

• Give some thought to how node monitoring might be used in a file manager
application.

• Look over the code from the open source file manager Seeker to see how node
monitoring was used to track entries in the currently-open folder.

	Monitoring Nodes
	The Node Monitor's Update Messages
	Opcode B_ENTRY_CREATED
	Opcode B_ENTRY_REMOVED
	Opcode B_ENTRY_MOVED
	Opcode B_STAT_CHANGED
	Opcode B_ATTR_CHANGED
	Opcode B_DEVICE_MOUNTED
	Opcode B_DEVICE_UNMOUNTED

	Handling Update Messages
	Setup Before Watching Files
	Fielding Update Messages

	Going Further

