
Programming with Haiku

Lesson 18

Written by DarkWyrm

All material © 2011 DarkWyrm

Application Scripting

One of the most complicated – and least understood – parts of the Haiku operating system is
its system for scripting applications. This is mostly because it looks like a complicated mess
to the uninitiated, and compared to the C++ API, it is. Unfortunately, this is the price paid for
the incredible flexibility it provides. The official documentation on the subject in the Be Book
doesn't exactly make it any easier, either. By the end of this lesson, you should have a good
grasp of the way that application scripting is done with Haiku.

Application scripting abstracts away all of the C++ details of the API and provides a way to
interact with an application using nothing but messages to manipulate objects and properties.
While any message can be technically sent to an application to script it, here is a list of the
official scripting message constants which can be used to describe most of the interface.

Command Description

B_COUNT_PROPERTIES Get the number of instances of a property.

B_CREATE_PROPERTY Create a new instance of a property. Note that this can't add
new properties to a suite – it can only create new instances of
an existing property.

B_DELETE_PROPERTY Delete an instance of a property.

B_EXECUTE_PROPERTY Run a property like a method.

B_GET_PROPERTY Get the value of a property.

B_SET_PROPERTY Set the value of a property.

Scripting Suites

These commands don't help us very much without one other key piece of the puzzle: getting
the list of properties for a particular object, i.e. the list of scripting interfaces an object
supports. The BHandler class is the foundation of Haiku's scripting support. Each scriptable
object inherits from the BHandler class, so every one of them has the properties Suites,
Messenger, and InternalName. This interface, known in the lingo as a suite, has the name
"vnd.Be-handler", which is not a MIME type even though it bears a striking resemblance
to one.

The Suites property is of particular interest to us. If we ask an object to GET it, it will reply
with a message which contains a list of the suites and properties that it supports. We can test
this out using the Terminal command hey, which comes bundled with Haiku. Run this
command from the Terminal:

hey Tracker getsuites

This certainly looks simple enough. hey hides some of the complexity for us. The output
from the above command reminds us of the beast with which we are dealing.

Reply BMessage(B_REPLY):
 "suites" (B_STRING_TYPE) : "suite/x-vnd.Be-TRAK"
 "suites" (B_STRING_TYPE) : "suite/vnd.Be-application"
 "suites" (B_STRING_TYPE) : "suite/vnd.Be-looper"

 "suites" (B_STRING_TYPE) : "suite/vnd.Be-handler"
 "messages" (B_PROPERTY_INFO_TYPE) :
 property commands specifiers types

 Trash B_DELETE_PROPERTY DIRECT
 Usage: delete Trash # Empties the Trash
 Folder B_CREATE_PROPERTY DIRECT RREF
 Usage: create Folder to path # creates a new folder
 Preferences B_EXECUTE_PROPERTY DIRECT
 Usage: shows Tracker preferences

 "messages" (B_PROPERTY_INFO_TYPE) :
 property commands specifiers types

 Window INDEX REV.INDEX
 Usage:
 Window NAME
 Usage:
 Looper INDEX REV.INDEX
 Usage:
 Looper ID
 Usage:
 Looper NAME
 Usage:
 Name B_GET_PROPERTY DIRECT CSTR
 Usage:
 Window B_COUNT_PROPERTIES DIRECT LONG
 Usage:
 Loopers B_GET_PROPERTY DIRECT MSNG
 Usage:
 Windows B_GET_PROPERTY DIRECT MSNG
 Usage:
 Looper B_COUNT_PROPERTIES DIRECT LONG
 Usage:

 "messages" (B_PROPERTY_INFO_TYPE) :
 property commands specifiers types

 Handler INDEX REV.INDEX
 Usage:
 Handlers B_GET_PROPERTY DIRECT MSNG
 Usage:
 Handler B_COUNT_PROPERTIES DIRECT LONG
 Usage:

 "messages" (B_PROPERTY_INFO_TYPE) :
 property commands specifiers types

 Suites B_GET_PROPERTY DIRECT (suites CSTR)
(messages SCTD)
 Usage:
 Messenger B_GET_PROPERTY DIRECT MSNG
 Usage:
 InternalName B_GET_PROPERTY DIRECT CSTR
 Usage:

 "error" (B_INT32_TYPE) : 0 (0x00000000)

What a mess! There is a way to make sense of it, though. We are looking at a dump of the
different suites that the main part of Tracker provides. There are four of them:

"suite/x-vnd.Be-TRAK"
"suite/vnd.Be-application"
"suite/vnd.Be-looper"
"suite/vnd.Be-handler"

The rest of the information printed is a dump of each suite in the same order as the list at the
top. Instead of trying to figure all four of them out at the same time, let's just look at the last
one and pick it apart.

A better way to describe this information would be like this:

Property Name Command Specifier Return Type

Suites Get Direct String array, BPropertyInfo array

Messenger Get Direct BMessenger

InternalName Get Direct String

Specifiers

The word Direct used in the third column of the table is the specifier for a scripting
command. Specifiers are the way that properties are referenced. Here is a list of the available
specifiers:

Specifier Description

B_DIRECT_SPECIFIER Used by properties where no additional information is
needed to reference the property. This is the specifier used
by non-array properties, like Name or Frame.

B_NAME_SPECIFIER A string is used to determine which property instance is to
be used.

B_ID_SPECIFIER A unique 32-bit integer is used to reference a particular
property instance.

B_INDEX_SPECIFIER A 32-bit integer specifies a property instance the same way
that you would an index for an array.

B_REVERSE_INDEX_SPECIFIER This works the same way, but counts from the end of the
array. A reverse index of -1 is the last element in the list.

B_RANGE_SPECIFIER One or more consecutive property instances can be
referenced at one time.

B_REVERSE_RANGE_SPECIFIER This works starting from the end of the array instead of the
beginning. More on both range specifiers can be found
below in the section on using the scripting API from C++.

Most – but not all – properties can be referenced using only one kind of specifier. When the
hey command prints out all of the properties in a suite, it lists each property by specifier type.
The "vnd.Be-application" suite used by BApplication objects could be described using
our simplified form like this:

Property Name Command Specifier Return Type

Window Any* Index, Reverse Index Object

Window Any* Name Object

Property Name Command Specifier Return Type

Window Count Direct int32

Looper Index, Reverse Index Object

Looper Name Object

Looper ID Object

Looper Count Direct int32

Name Get Direct String

Windows Get Direct BMessage

Loopers Get Direct BMessage

A window, for example, can be referenced by index, reverse-order index, or by name. Getting
the window itself isn't very useful, but accessing a window's properties is. Here are a few of
the more useful properties in the "vnd.Be-window" window suite:

Property Name Command Specifier Return Type

Title Get, Set Direct String

Frame Get, Set Direct BRect

MenuBar Any Direct Object

View Count Direct Int32

View Any* Name, Index, Reverse Index Object

Let's play around a bit with StyledEdit using these Terminal commands:

open /system/apps/StyledEdit
hey StyledEdit set Title of Window "Untitled 1" to "Haiku Rocks"
hey StyledEdit set Frame of Window 1 to "BRect(100,100,500,400)"
hey StyledEdit get Title of Window -1

First, we open StyledEdit, then we change the title of the first blank document window to
"Haiku Rocks" and both move and resize the window. StyledEdit's Window 0 happens to be
the Open File dialog window, which is not really what we want. Lastly, we obtain the title of
the last window.

Any time a property returns an object, it means that an additional specifier must be used to
get at the subobject's properties. We can home in on a Window's views or menus this way.

hey StyledEdit get InternalName of View -1 of View 1 of Window -1

The name returned is textview. Very interesting! We just homed in on the BTextView used
to hold the text in a document window! Perhaps the most amazing part about it all is that we
didn't use one bit of C or C++ to do it. hey provides an interface to the scripting API which
can be used easily from any language.

Concluding Thoughts

The scripting API that Haiku provides is very deep and powerful, but far underutilized or
understood. With the ground we have covered here, you should be starting to get an idea of
its potential. Any Haiku application can be "remotely controlled" in a limited way without
any extra effort from the developer. An obscure program from the days of BeOS called
DogWhistle used scripting with Tracker to create a unique file management application, for
example. With a little work, your programs can be leveraged by others to do something which
was previously not possible.

Going Further

• Fire up the accompanying demo application Scripting Explorer and use it to tinker
around with some of the programs bundled with Haiku. See what interfaces some of
the programs provide. How could they be used by others?

• What programs bundled with Haiku are currently of limited scripting use and could be
expanded to be much more powerful? For what could some of them be used?

• For a real thinking challenge, what might go into a library designed to program the
API purely from the scripting API? How could it be implemented?

	Application Scripting
	Scripting Suites
	Specifiers
	Concluding Thoughts
	Going Further

