
Programming with Haiku

Lesson 4

Written by DarkWyrm

All material © 2010 DarkWyrm

Source Control: What is It?

In my early days as a developer on the Haiku project I had troubles on occasion because I had
to use a source control manager (SCM). I didn't understand it and I didn't want to take the
time to learn about it from some tutorial online. I wanted to be able to write code with as few
hurdles as possible. How I wish that I'd understood source control then.

Source control, also known as revision control or version control, is a tool or set of tools
which facilitates development on a single codebase by many people at once. This is done by
recording the changes that are made by each person and ensuring that one person's changes
cannot be applied at the same time as another's. Most also provide for working on a separate
copy of the main sources, called a branch.

Using an SCM forces your workflow to have some structure, which is actually a good thing
for those who have a hard time getting organized, provided that they are willing to work with
it. Day-to-day coding involves checking out others' updates and checking in your own. On
occasion, a change must be undone, called reverting a change. Sometimes a feature is large
enough that it necessitates working over the course of several check-ins, called commits. In
these cases, a branch is created so that the development of the feature benefits from source
control without disturbing others' work. When the feature is completed, it is merged back into
the main part of the tree.

Source Control: Why Use It?

The benefits of using an SCM as part of your workflow far outweigh any drawbacks almost
100% of the time. If you are part of a project with more than one person, the automation of
change tracking frees up time to spend on other tasks. It also removes the human factor of
applying changes. While it might be possible for two or three people to work together by e-
mailing files to each other, the potential for mistakes is great and it cannot be easily sustained
for an extended period of time. The ability to undo changes with a command or two is a
major time-saver.

A few drawbacks accompany using source control. Setting up a project in source control can
take some time. Changing from one SCM to another is not always easy. Choosing a source
control manager isn't easy – there are many available and the advantages of each are not
always clear. Setting up your own SCM server, such as for a business or for private hosting of
a closed source project, has challenges of its own as well. These headaches are considered
minor by most veteran coders because often they have had at least one instance where source
control got them out of a jam.

Source Control: Which One?

On other platforms, such as Linux or OS X, there are a plethora of different SCMs from
which to choose. As of this writing, there are four available for Haiku, described below.

Concurrent Versioning System (CVS)

CVS is one of the oldest SCMs still available and in use. It was originally developed as an
improvement over the set of tools known as Revision Control System (RCS). It uses a client-
server architecture and is still widely used. CVS is considered by some to be not worth using.
When compared to other choices, it tends to come up short on features or has limitations that

others do not have, such as not being able to rename or move files. It is not recommended for
inexperienced developers.

Subversion (SVN)

Subversion was started with the intention of fixing the problems present in CVS, and is also a
widely-popular, well-liked source control tool. Like CVS, Subversion uses a client-server
architecture. It supports moving and renaming files, branches are relatively fast, and commits
are truly atomic operations. It does have problems, as well, though. One common criticism is
that while branching is simple, merging a branch back into the main one does not always
work well and can be tedious and/or time-consuming. Overall, it is a good tool and, as of this
writing, is the tool used by the Haiku project.

Git

Git was originally developed by Linus Torvalds for work on the Linux kernel. Unlike
Subversion and CVS, it uses a distributed model where each developer has a full copy of the
repository. It was written to be whatever CVS isn't – to protect against corruption, to be very
fast, and to work much like the proprietary SCM BitKeeper. Git has quickly developed a
passionate following. One of its main drawbacks is that while there are two implementations
for Windows, neither is an ideal solution. While very, very fast, it can also be somewhat
confusing while getting accustomed to using it. In many ways, it has a design perspective
similar to that of Linux as an operating system.

Mercurial (hg)

Mercurial is a brother-in-arms to Git, having been started at about the same time and for the
same basic reason: the company behind BitKeeper, BitMover, withdrew their version of
BitKeeper which was free to open source projects not developing a competing SCM. It is
written mostly in Python and is available on most major platforms and Haiku. Like Git, it has
a loyal following and there is a never-ending controversy between Mercurial users and Git
users about which is better, similar to that of two well-known colas. The design perspective
for Mercurial could be likened to that of OS X or Haiku – simple, but not oversimplified. It is
a recommended starting point for a developer to learn how to use source control and will be
the one referenced in the future. Just like a preferred IDE, if you have a different preference,
that's just fine.

First Steps Using Source Control

Although Paladin provides a convenient interface to using source control, it does not go in-
depth into some of the finer points of using any of those which it supports. For the purposes
of this lesson, we will just cover the basics of using Mercurial from the command line.

The first task on the order of business is to tell Mercurial who you are. Create a file in your
home folder called .hgrc, open it in a text editor, and place the following contents in it:

[ui]
username = My Name <myemail@foo.com>

Of course, you will want to substitute your own name and e-mail address. Also, unless you
prefer the nano editor included in Haiku, you'll want to set the text editor used by Mercurial
when you describe your changes when you check them in. My preference is to use Pe, an

excellent text editor written specifically for Haiku. To use Pe as your text editor, create a file
in your home folder called .profile if it doesn't already exist and add this line to it:

export EDITOR=lpe

If you have a different editor you'd prefer to use, substitute the name of your preferred editor
for lpe. If the executable is not in /boot/system/bin, /boot/common/bin, or
/boot/home/config/bin, you'll need to use the full path to the executable. Your .profile
file is a Bash script executed at the beginning of each Terminal session, so you can place
other customizations here, too, if you like.

Now that the initial setup is done, let's make a repository. Mercurial can be used to add source
control to a new project or an existing one. Open a Terminal window, go to an empty folder,
and enter this command:

$ hg init

This uses the current directory as the top folder in the repository. All subfolders are
considered part of it, although empty directories will be ignored. You won't see Mercurial
print anything after typing the command, but if you issue an ls -a command, you'll see that
a .hg directory was created – this folder is where Mercurial keeps all of its information for
the entire repository. While you're at it, create or copy over a couple of test text files in the
directory that we'll use in a moment.

Now we will add your test files to the repository. Mercurial and other SCMs will track only
those files which you have told it to track, although they will tell you if they see files they
don't recognize. Adding files to Mercurial's list of files to manage is simply another
command:

$ hg add
adding ObjectArray.h
adding foo.cpp

All files in the current folder and all subfolders will be added to the repository. Of course,
you can specify a file or list of files after the word add, instead. Adding files to the repository
doesn't change anything unless you check in the changes.

Before we make our first commit, it's often good to make sure you know ahead of time what
changes have been made. This can be done in one of two ways. The first way is to use hg
status. This will print out a list of file which are not up-to-date, which can be added,
removed, modified, or unrecognized files. The other way is hg diff, which shows the actual
changes made to each file. Here is what hg status looks like:

$ hg status
A ObjectArray.h
A foo.cpp

Two files have been added since the last commit, or in our case, since the creation of the
repository. Other codes for files can be found in the following table.

Status Code Meaning

M Modified

A Added

R Removed

C Clean

! Missing – file does not exist, but is still being tracked

? Not tracked

I Ignored

If you are not already familiar with the diff command used in the Terminal, give the hg
diff command a try to see how it looks, but be prepared for a lot of text to be printed. It is
often best to view a diff using a pager in the Terminal such as hg diff | less or doing it
from Paladin where you get a scrollable text window.

Before we do our commit, let's examine what we would need to do if something happened
that we didn't want to commit to the repository. Let's say that you added a bunch of printf()
calls to a file for some debugging, but you don't want them going into the tree. Although you
could go back and remove them all manually, if these printf() calls were the only changes
you made to the file, you could revert it.

Reverting a file undoes all changes made to it since the last commit. If you've accidentally
added a file that you don't want tracked, it will un-add it. If you accidentally delete a tracked
file, Mercurial will replace it with a new copy. Modified files will go back to an unmodified
state. In short, it fixes any mistakes you've made, and when you revert a modified file,
Mercurial creates a .orig file which contains the changes you made in case you want them
after all.

A revert can be done in several ways. You can revert just one file or the entire tree. The revert
can go back to a specific revision. It can also be done without backing up the changes made.
Here are some of the options for hg revert:

Command Action

hg revert --all Reverts all files in the tree

hg revert myFile.cpp Reverts myFile.cpp. Changes will be backed
up to myFile.cpp.orig

hg revert --no-backup myFile.cpp Reverts myFile.cpp, but makes no backup

hg revert -r d8787f07dd69 --all-
files --no-backup

Reverts the entire source tree back to the
specified revision (changeset), making no
backups to changes

Considering the myriad ways that a developer can make mistakes, knowing the different
ways that revert works can save you time, effort, and stress.

Let's move on and check in our changes. Enter this command to initiate a commit:

$ hg commit

After entering this command, Mercurial will open an editor to allow you to add a message to
describe the commit. If you didn't specify an editor in your .profile, this will be the console
text editor nano. Use the message "Initial check-in" or something similar, save the file in the
editor, and close it. Mercurial may or may not print anything. Rest assured that even if it
doesn't, your first commit was successful. You can confirm this, though, with the hg log
command, which can be done for the entire repository or just certain files.

$ hg log
changeset: 0:0dbb51f0e1fa
tag: tip
user: DarkWyrm <darkwyrm@gmail.com>
date: Sun Aug 15 21:30:56 2010 -0400
summary: Initial commit

Working with Others Using Mercurial

If you're just working on your own project and have no intention of working with others on it,
these commands are all you'll need. However, having a project on an open source hosting
site such as BitBucket or Sourceforge involves a few others, as well.

Let's pretend for a moment that you have applied for hosting a project called MyProject at a
site called MyMercurial. After submitting the application, you are approved and the site has
created your repository. Now what?

First, you will need to make a local copy of the repository hosted by MyMercurial. You will
need to get the URL of the repository from the hosting site which is specific to the hosting
site and your project. For our example, the repository URL is
http://mymercurial.foo/hg/myproject. To make our local repository, we will use the hg clone
command. Mercurial will probably print something similar to this:

$ hg clone http://mymercurial.foo/hg/myproject
destination directory: myproject
requesting all changes
adding changesets
adding manifests
adding file changes
added 0 changesets with 0 changes to 0 files
updating to branch default
0 files updated, 0 files merged, 0 files removed, 0 files unresolved

You will now have a subfolder of the current one called myproject. It doesn't have any files
in it, but it will be easy for us to send changes to the remote one. Most of the rest of the work
is exactly the same as what we did a moment ago: copying files for the project into the folder,
using the hg add command to add files to it, and hg commit to check them in.

When working with a project hosted online, there is one extra step in the workflow: pushing
changes. Commits only apply to the repository sitting on your hard drive, unlike centralized
source control tools like CVS and Subversion. Getting your changes to the online repository
is done with hg push. The results look similar to this:

$ hg push

http://mymercurial.foo/hg/myproject

pushing to /boot/home/testrepo
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

Getting changes from the online repository is similar to publishing them to it. This is done
with the command hg pull. This grabs the changes from the online repository and
downloads them. It does not, however, automatically merge them into your sources unless
you add the -u switch. Omitting the switch means that once the pull is complete, executing
an hg merge and hg commit is needed afterward.

Wrapping it All Up: Source Control in a Nutshell

Working with source control can seem complicated at first, but concepts carry over from one
SCM to another, and the basics don't involve much in most situations. Most of the time, you'll
follow a workflow something like this:

1. Write and/or modify code.
2. Commit your changes locally.
3. Repeat steps 1 and 2 as many times as desired. When you're ready to update the

online repository, continue to step 4.
4. Pull and merge remote changes.
5. Push your modifications to the remote repository.

When you look at the workflow this way, it doesn't seem very complicated and for a very
good reason: it isn't complicated. More advanced source control use, such as using branches,
is beyond the scope of this lesson but not much more complicated than the above series of
steps.

If source control is so simple, why doesn't everyone use it? In most cases, it is because of
ignorance, laziness, or both. Integrating source control into your development workflow will
make your work easier and potentially save you from major problems.

	Source Control: What is It?
	Source Control: Why Use It?
	Source Control: Which One?
	Concurrent Versioning System (CVS)
	Subversion (SVN)
	Git
	Mercurial (hg)

	First Steps Using Source Control
	Working with Others Using Mercurial
	Wrapping it All Up: Source Control in a Nutshell

