
v

Table of Contents

Preface ... vii

1. BeOS Programming Overview ... 1
Features of the BeOS ... 1

Structure of the BeOS .. 5

Software Kits and Their Classes .. 7

BeOS Programming Fundamentals ... 13

BeOS Programming Environment ... 28

2. BeIDE Projects .. 31
Development Environment File Organization .. 31

Examining an Existing BeIDE Project ... 34

Setting up a New BeIDE Project ... 47

HelloWorld Source Code ... 65

3. BeOS API Overview .. 75
Overview of the BeOS Software Kits .. 75

Software Kit Class Descriptions ... 80

Chapter Example: Adding an Alert to MyHelloWorld 89

4. Windows, Views, and Messages ... 98
Windows ... 98

Views .. 110

Messaging ... 126

vi Table of Contents

5. Drawing ... 134
Colors .. 135

Patterns ... 150

The Drawing Pen ... 155

Shapes ... 159

6. Controls and Messages ... 177
Introduction to Controls .. 177

Buttons .. 189

Picture Buttons ... 193

Checkboxes .. 198

Radio Buttons ... 204

Text Fields .. 214

Multiple Control Example Project ... 220

7. Menus .. 226
Menu Basics ... 226

Working With Menus ... 244

Multiple Menus ... 258

Pop-up Menus .. 262

Submenus ... 268

8. Text ... 272
Fonts ... 273

Simple Text ... 282

Editable Text .. 286

Scrolling .. 305

9. Messages and Threads .. 322
The Application Kit and Messages .. 323

Application-Defined Messages .. 330

10. Files .. 359
Files and the Storage Kit .. 359

Using Standard Open and Save Panels ... 361

Onward ... 375

Index .. 377

1

Chapter 1

In this chapter:
• Features of the BeOS
• Structure of the BeOS
• Software Kits and

Their Classes
• BeOS Programming

Fundamentals
• BeOS Programming

Environment

1
1.BeOS Programming

Overview

A few years back, the Macintosh operating system was considered innovative and
fun. Now many view it as dated and badly in need of a rewrite rather than a sim-
ple upgrade. Windows 95 is the most popular operating system in the world—but
this operating system is in many ways a copy of the Mac OS, less the Mac’s charac-
ter. Many programmers and computer enthusiasts enjoy the command-line inter-
face power of Unix—but Unix isn’t nearly intuitive enough for the average end
user. What users really want is an operating system that has an easy-to-use graphi-
cal user interface, takes advantage of the power of today’s fast microprocessor
chips, and is unencumbered with the burdens of backward compatibility. Enter Be,
Inc., and the BeOS—the Be operating system.

In this introductory chapter, you’ll learn about the features of the BeOS from a
programmer’s perspective. In particular, you’ll read about the terminology relating
to the Be operating system. You’ll also get an overview of the layout of the appli-
cation programming interface, or API, that you’ll be using to aid you in piecing
together your programs. After the overview, you’ll look at some of the fundamen-
tals of writing applications for the BeOS. No attempt will be made to supply you
with a full understanding of the concepts, techniques, and tricks of programming
for this operating system—you’ve got the whole rest of the book for that! Instead,
in this chapter I’ll just give you a feel for what it’s like to write a program for the
BeOS. Finally, this chapter concludes with a first look at Metrowerks CodeWar-
rior—the integrated development environment you’ll be using to develop your
own applications that run on the BeOS.

Features of the BeOS
With any new technology comes a plethora of buzzwords. This marketing hype is
especially true in the computer industry—innovative software and hardware seem

2 Chapter 1: BeOS Programming Overview

to appear almost daily, and each company needs some way to ensure that the
public views their product as the best. Unsurprisingly, the BeOS is also accompa-
nied by a number of buzzwords—multithreaded, multiprocessor support, and
preemptive multitasking being a few. What may be surprising is that this nomen-
clature, when applied to BeOS, isn’t just hype—these phrases really do define this
exciting operating system!

Multithreaded

A thread is a path of execution—a part of a program that acts independently from
other parts of the program, yet is still capable of sharing data with the rest of pro-
gram. An OS that is multithreaded allows a single program to be divided into sev-
eral threads, with each thread carrying out its own task. The processor devotes a
small amount of time first to one thread and then to another, repeating this cycle
for as long as it takes to carry out whatever task each thread is to perform. This
parallel processing allows the end user to carry out one action while another is
taking place. Multithreading doesn’t come without a price—though fortunately in
the BeOS this price is a rather small one. A program that creates multiple threads
needs to be able to protect its data against simultaneous access from different
threads. The technique of locking information when it is being accessed is one
that is relatively easy to implement in BeOS programs.

The BeOS is a multithreaded operating system—and a very efficient one. While
programmers can explicitly create threads, much of the work of handling threads
is taken care of behind the scenes by the operating system itself. For instance,
when a window is created in a program, the BeOS creates and maintains a sepa-
rate thread for that one window.

Multiprocessor Support

An operating system that uses multithreading, designed so that threads can be sent
to different processors, is said to use symmetric multiprocessing, or SMP. On an
SMP system, unrelated threads can be sent to different processors. For instance, a
program could send a thread that is to carry out a complex calculation to one pro-
cessor and, at the same time, send a thread that is to be used to transfer a file over
a network to a second processor. Contrasting with symmetric multiprocessing
(SMP) is asymmetric multiprocessing, or AMP. A system that uses AMP sends a
thread to one processor (deemed the master processor) which in turn parcels out
subtasks to the other processor or processors (called the slave processor or pro-
cessors).

The BeOS can run on single-processor systems (such as single-processor Power
Macintosh computers), but it is designed to take full advantage of machines that

Features of the BeOS 3

have more than one processor—it uses symmetric multiprocessing. When a Be
program runs on a multiprocessor machine, the program can send threads to each
processor for true parallel processing. Best of all, the programmer doesn’t need to
be concerned about how to evenly divide the work load. The Be operating sys-
tem is responsible for distributing tasks among whatever number of processors are
on the host machine—whether that be one, two, four, or more CPUs.

The capability to run different threads on different processors, coupled with the
system’s ability to assign threads to processors based on the current load on each
processor, makes for a system with very high performance.

Preemptive Multitasking

An operating system that utilizes multitasking is one that allows more than one
program to run simultaneously. If that operating system has cooperative multitask-
ing, it’s up to each running program to yield control of system resources to allow
the other running applications to perform their chores. In other words, programs
must cooperate. In a cooperative multitasking environment, programs can be
written such that they don’t cooperate graciously—or even such that they don’t
cooperate at all. A better method of implementing multitasking is for an operating
system to employ preemptive multitasking. In a preemptive multitasking environ-
ment the operating system can, and does, preempt currently running applications.
With preemptive multitasking, the burden of passing control from one program to
another falls on the operating system rather than on running applications. The
advantage is that no one program can grab and retain control of system resources.

If you haven’t already guessed, the BeOS has preemptive multitasking. The BeOS
microkernel (a low-level task manager discussed later in this chapter) is responsi-
ble for scheduling tasks according to priority levels. All tasks are allowed use of a
processor for only a very short time—three-thousandths of a second. If a program
doesn’t completely execute a task in one such time-slice, it will pick up where it
left off the next time it regains use of a processor.

Protected Memory

When a program launches, the operating system reserves an area of RAM and
loads a copy of that program’s code into this memory. This area of memory is then
devoted to this application—and to this application only. While a program run-
ning under any operating system doesn’t intentionally write to memory locations
reserved for use by other applications, it can inadvertently happen (typically when
the offending program encounters a bug in its code). When a program writes out-
side of its own address space, it may result in incorrect results or an aborted pro-
gram. Worse still, it could result in the entire system crashing.

4 Chapter 1: BeOS Programming Overview

An operating system with protected memory gives each running program its own
memory space that can’t be accessed by other programs. The advantage to mem-
ory protection should be obvious: while a bug in a program may crash that pro-
gram, the entire system won’t freeze and a reboot won’t be necessary. The BeOS
has protected memory. Should a program attempt to access memory outside its
own well-defined area, the BeOS will terminate the rogue program while leaving
any other running applications unaffected. To the delight of users, their machines
running BeOS rarely crash.

Virtual Memory

To accommodate the simultaneous running of several applications, some operat-
ing systems use a memory scheme called virtual memory. Virtual memory is
memory other than RAM that is devoted to holding application code and data.
Typically, a system reserves hard drive space and uses that area as virtual mem-
ory. As a program executes, the processor shuffles application code and data
between RAM and virtual memory. In effect, the storage space on the storage
device is used as an extension of RAM.

The BeOS uses virtual memory to provide each executing application with the
required memory. For any running application, the system first uses RAM to han-
dle the program’s needs. If there is a shortage of available physical memory, the
system then resorts to hard drive space as needed.

Less Hindered by Backward Compatibility

When a company such as Apple or Microsoft sets about to upgrade its operating
system, it must take into account the millions of users that have a large invest-
ment in software designed to run on the existing version of its operating system.
So no matter how radical the changes and improvements are to a new version of
an operating system, the new OS typically accommodates these users by supply-
ing backward compatibility.

Backward compatibility—the ability to run older applications as well as programs
written specifically for the new version of the OS—helps keep the installed base of
users happy. But backward compatibility has a downside: it keeps an upgrade to
an operating system from reaching its true potential. In order to keep programs
that were written for old technologies running, the new OS cannot include some
new technologies that would “break” these existing applications. As a new operat-
ing system, the BeOS had no old applications to consider. It was designed to take
full advantage of today’s fast hardware and to incorporate all the available mod-
ern programming techniques. As subsequent releases of the BeOS are made avail-
able, backward compatibility does become an issue. But it will be quite a while

Structure of the BeOS 5

before original applications need major overhauling (as is the case for, say, a Mac-
intosh application written for an early version of the Mac OS).

Structure of the BeOS
Be applications run on hardware driven by either Intel or PowerPC microproces-
sors (check the BeOS Support Guides page at http://www.be.com/support/guides/
for links to lists of exactly which Intel and PowerPC machines are currently sup-
ported). Between the hardware and applications lies the BeOS software. As shown
in Figure 1-1, the operating system software consists of three layers: a microkernel
layer that communicates with the computer’s hardware, a server layer consisting of
a number of servers that each handle the low-level work of common tasks (such
as printing), and a software kit layer that holds several software kits—shared
libraries (known as dynamically linked libraries, or DLLs, to some programmers)
that act as a programmer’s interface to the servers and microkernel.

Microkernel

The bottom layer consists of the microkernel. The microkernel works directly with
the hardware of the host machine, as well as with device drivers. The code that
makes up the microkernel handles low-level tasks critical to the control of the
computer. For instance, the microkernel manages access to memory. The kernel
also provides the building blocks that other programs use: thread scheduling, the
file system tools, and memory-locking primitives.

Servers

Above the microkernel lies the server layer. This layer is composed of a number of
servers—processes that run in the background and carry out tasks for applications
that are currently executing. For example, the purpose of the Input Server is

Figure 1-1. The layers of the BeOS reside between applications and hardware

Application

Software Kits

Server

Microkernel

Hardware

6 Chapter 1: BeOS Programming Overview

to handle access to all the various keyboards, mice, joysticks, and other input
devices that may be connected to a machine running the BeOS. Another server
is the Application Server, a very important server that handles the display of
graphics and application communication. As a programmer you won’t work
directly with servers; instead, you’ll rely on software kits to access the power of
the server software.

Kits

Above the server layer is the software kit layer. A kit consists of a number of
object-oriented classes that a programmer makes use of when writing a BeOS pro-
gram. Collectively the classes in the software kits comprise the BeOS API. You
know that the abbreviation API stands for application programming interface. But
what does the application interface to? Other software. For Be applications, the
kits are the interface to the various servers. For instance, the Application Kit holds
several classes used by programmers in your position who are trying to create
tools for users. The programmer writes code that invokes methods that are a part
of the classes of the Application Kit, and the Application Kit then communicates
with the Application Server to perform the specified task. A couple of the other
servers you’ll encounter in your Be programming endeavors are the Print Server
and the Media Server.

Some kits don’t rely on servers to carry out microkernel-related operations—the
chores they take care of may be simple and straightforward enough that they don’t
need their own server software. Instead, these kits directly invoke microkernel
code. As you can see in Figure 1-1, an application relies directly on the software
kits and indirectly on the servers and microkernel.

As you become more proficient at BeOS programming, you’ll also become more
intimate with the classes that comprise the various software kits. Now that you
know this, you’ll realize that it is no accident that the majority of this book is
devoted to understanding the purpose of, and working with, the various BeOS
kits.

This book is tutorial in nature. Its purpose is to get you acquainted
with the process of developing applications that run on the BeOS
and to provide an overview of the BeOS API. Its purpose isn’t to
document the dozens of classes and hundreds of member functions
that make up the BeOS API. After—or while—reading this book, you
may want such a reference. If you do, consider the books Be Devel-
oper’s Guide and Be Advanced Topics, also by O’Reilly & Associates.

Software Kits and Their Classes 7

Software Kits and Their Classes
The application programming interface of the BeOS is object-oriented—the code
that makes up the software kits is written in C++. If you have experience program-
ming in C++ on any platform, you’re already at the midpoint in your journey to
becoming adept at BeOS programming. Now you just need to become proficient
in the layout and use of the classes that make up the software kits.

Software Kit Overview

The BeOS consists of about a dozen software kits—the number is growing as the
BeOS is enhanced. Don’t panic, though—you won’t be responsible for knowing
about all the classes in all of the kits. Very simple applications require only the
classes from a very few of the kits. For instance, an application that simply dis-
plays a window that holds text uses the Application Kit and the Interface Kit. A
more complex application requires more classes from more kits. Presentation soft-
ware that stores sound and video data in files, for example, might require the use
of classes from the Storage Kit, the Media Kit, and the Network Kit—as well as
classes from the two previously mentioned kits. While it’s unlikely that you’ll ever
write a program that uses all of the BeOS kits, it’s a good idea to at least have an
idea of the purpose of each.

The kits of the BeOS are subject to change. As the BeOS matures,
new functionality will be added. This functionality will be supported
by new classes in existing kits and, perhaps, entirely new software
kits.

Application Kit
The Application Kit is a small but vitally important kit. Because every applica-
tion is based on a class derived from the BApplication class that is defined
in this kit, every application uses the Application Kit.

The Application Kit defines a messaging system (described later in this chap-
ter) that makes applications aware of events (such as a click of a mouse but-
ton by the user). This kit also give applications the power to communicate
with one another.

Interface Kit
The Interface Kit is by far the largest of the software kits. The classes of this
kit exist to supply applications with a graphical user interface that fully sup-
ports user interaction. The definition of windows and the elements that are
contained in windows (such as scrollbars, buttons, lists, and text) are handled

8 Chapter 1: BeOS Programming Overview

by classes in this kit. Any program that opens at least one window uses the
Interface Kit.

Storage Kit
The Storage Kit holds the classes that store and update data on disks. Pro-
grams that work with files will work with the Storage Kit.

Support Kit
As its name suggests, the contents of the Support Kit support the other kits.
Here you’ll find the definitions of datatypes, constants, and a few classes.
Because the Support Kit defines many of the basic elements of the BeOS (such
as the Boolean constants true and false), all applications use this kit.

Media Kit
The Media Kit is responsible for the handling of real-time data. In particular,
this kit defines classes that are used to process audio and video data.

Midi Kit
The Midi Kit is used for applications that process MIDI (Musical Instrument
Digital Interface) data.

Kernel Kit
The Kernel Kit is used by applications that require low-level access to the
BeOS microkernel. This kit defines classes that allow programmers to explic-
itly create and maintain threads.

Device Kit
The Device Kit provides interfaces to hardware connectors (such as the serial
port), and is necessary only for programmers who are developing drivers.

Network Kit
The Network Kit exists to provide TCP/IP services to applications.

OpenGL Kit
The OpenGL Kit provides classes that allow programmers to add 3D capabili-
ties to their programs. The classes aid in the creation and manipulation of
three-dimensional objects.

Translation Kit
The Translation Kit is useful when a program needs to convert data from one
media format to another. For instance, a program that can import an image of
one format (such as a JPEG image) but needs to convert that image to another
format might make use of this kit.

Mail Kit
The Mail Kit assists in adding Internet email services (such as sending mes-
sages using Simple Mail Transfer Protocol (SMTP) to an application).

Software Kits and Their Classes 9

Game Kit
The Game Kit—which is under development as of this writing—consists of
two major classes that support game developers.

BeOS Naming Conventions

Some of the many classes that make up the BeOS are discussed a little later. As
they’re introduced, you’ll notice that each starts with an uppercase letter “B,” as in
BMessage, BApplication, and BControl. This is no accident, of course—the
software of the kits follows a naming convention.

The BeOS software kits consist of classes (which contain member functions and
data members), constants, and global variables. The BeOS imposes a naming con-
vention on each of these types of elements so that anyone reading your code can
readily distinguish between code that is defined by the BeOS and code that is
defined by your own program. Table 1-1 lists these conventions.

Classes of the BeOS always begin with an uppercase “B” (short for “BeOS”, of
course). Following the “B” prefix, the first letter of each word in the class name
appears in uppercase, while the remainder of the class name appears in
lowercase. Examples of class names are BButton, BTextView, BList, and
BScrollBar.

Member functions that are defined by BeOS classes have the first letter of each
word in uppercase and the remainder of the function name in lowercase. Exam-
ples of BeOS class member function names are GetFontInfo(), KeyDown(),
Frame(), and Highlight().

Data members that are defined by BeOS classes have the first letter of each word
in uppercase and the remainder of the data member name in lowercase, with the
exception of the first word—it always begins in lowercase. Examples of BeOS
class data member names are rotation and what.

Table 1-1. BeOS Naming Conventions

Category Prefix Spelling Example

Class name B Begin words with uppercase letter BRect

Member function none Begin words with uppercase letter OffsetBy()

Data member none Begin words (excepting the first) with
uppercase letter

bottom

Constant B_ All uppercase B_LONG_TYPE

Global variable be_ All lowercase be_clipboard

10 Chapter 1: BeOS Programming Overview

I’ve included only a couple of examples of data member names
because I had a hard time finding any! Be engineers went to great
lengths to hide data members. If you peruse the Be header files
you’ll find a number of data members—but most are declared pri-
vate and are used by the classes themselves rather than by you, the
programmer. You’ll typically make things happen in your code by
invoking member functions (which themselves may access or alter
private data members) rather than by working directly with any data
members.

Constants defined by BeOS always begin with an uppercase “B” followed by an
underscore. The remainder of the constant’s name is in uppercase, with an under-
score between words. Examples include: B_WIDTH_FROM_LABEL, B_WARNING_
ALERT, B_CONTROL_ON, and B_BORDER_FRAME.

The BeOS software includes some global variables. Such a variable begins with the
prefix “be_” and is followed by a lowercase name, as in: be_app, be_roster, and
be_clipboard.

Software Kit Inheritance Hierarchies

The relationships between classes of a software kit can be shown in the inherit-
ance hierarchy for that kit. Figure 1-2 shows such an inheritance hierarchy for the
largest kit, the Interface Kit.

The kits that make up the BeOS don’t exist in isolation from one
another. A class from one kit may be derived from a class defined in
a different kit. The BWindow class is one such example. Kits serve as
logical groupings of BeOS classes—they make it easier to categorize
classes and conceptualize class relationships.

Figure 1-2 shows that the object-oriented concept of inheritance—the ability of
one class to inherit the functionality of another class or classes—plays a very large
role in the BeOS. So too does multiple inheritance—the ability of a class to inherit
from multiple classes. In the figure, you see that almost all of the Interface Kit
classes are derived from other classes, and that many of the classes inherit the con-
tents of several classes. As one example, consider the six control classes pictured
together in a column at the far right of Figure 1-2. An object of any of these classes
(such as a BButton object) consists of the member functions defined in that class
as well as the member functions defined by all of the classes from which it is
directly and indirectly derived: the BControl, BInvoker, BView, BHandler, and

Software Kits and Their Classes 11

BArchivable classes. Figure 1-3 isolates the discussed classes for emphasis of this
point. This figure shows that in inheritance hierarchy figures in this book, a class
pictured to the left of another class is higher up in the hierarchy. In Figure 1-3,
BView is derived from BHandler, BControl is derived from BView, and so forth.

Figure 1-2. The inheritance hierarchy for the Interface Kit

Application Kit

Other Be Kit

BRoster

BRoster

BObjects
Support Kit

BRegion

BPolygon

Application Kit Application Kit
BHandler BLooper BWindow BAlert

BView BTextView

BStringView

BBox

BControl BTextControl

BColorControl

BCheckBox

BRadioButton

BPictureButton

BButton

BPopUpMenu

BMenuBar

BScrollBar

BScrollView

BListView

BMenu

BMenu

BPrintJob

BPicture

BBitmap

BMenuItem BSeparationItem

12 Chapter 1: BeOS Programming Overview

Understanding the class hierarchies of the BeOS enables you to
quickly determine which class or classes (and thus which member
functions) you will need to use to implement whatever behavior
you’re adding to your program. Obviously, knowledge of the class
hierarchies is important. Don’t be discouraged, though, if the hierar-
chies shown in Figures 1-2 and 1-3 don’t make complete sense to
you. This chapter only provides an overview of the object-oriented
nature of the BeOS. The remainder of the book fills in the details of
the names, purposes, and uses of the important and commonly used
classes.

The BControl class defines member functions that handle the needs common to
any type of control. For instance, a control should be able to have two states:
enabled or disabled. An enabled control is active, or usable by the user. A dis-
abled control is inactive—and has a greyed-out look to let the user know it is
unusable. To give controls the ability to implement this behavior, the BControl
class includes the SetEnabled() member function. This routine is used to enable
or disable a control—any kind of control. Individual types of controls will have
some needs that aren’t common to all other types of controls and thus can’t be

Figure 1-3. The Interface Kit classes that contribute to the various control classes

Application Kit

Other Be Kit

BObjects
Support Kit

Application Kit
BHandler

BView

BTextControl

BColorControl

BCheckBox

BRadioButton

BPictureButton

BButton

BControl

BeOS Programming Fundamentals 13

implemented by the BControl class. For example, different controls (such as but-
tons and checkboxes) have different looks. To make it possible for each control
type to be able to draw itself, each control class defines its own constructor to ini-
tialize the control and a Draw() member function to handle the drawing of the
control.

Not all BeOS classes are derived from other classes—there are a few
classes that don’t rely on inheritance. Two examples, both of which
happen to be in the Interface Kit, are the BRect and BPoint classes.
The BRect class is used to create objects representing rectangles. A
rectangle is an easily defined, two-dimensional shape that’s consid-
ered a basic datatype. As such, it doesn’t need to inherit the func-
tionality of other classes. The BPoint class is not a derived class for
the same reason.

BeOS Programming Fundamentals
In the previous section, you gained an understanding of how the BeOS is com-
posed of numerous interrelated classes that are defined in software kits. Together
these classes form an application framework from which you build your Be appli-
cations. Your program will create objects that are based on some of the BeOS
classes. These objects will then communicate with one another and with the oper-
ating system itself through the use of messages. In this section, you’ll look at a few
of the most important of these classes, and you’ll see how they’re used. You’ll also
see how messages play a role in a BeOS program. To make the transition from the
theoretical to the practical, I’ll supply you with a few C++ snippets—as well as the
code for a complete Be application. In keeping with the introductory nature of this
chapter, I’ll make this first application a trivial one.

Messages, Threads, and Application Communication

Earlier in this chapter, you read that the BeOS is a multithreaded operating sys-
tem. You also read that the term multithreaded isn’t just bandied about by BeOS
advocates for no good reason—it does in fact play a key role in why the BeOS is a
powerful operating system. Here, you’ll get an introduction as to why that’s true.
In Chapter 4, Windows, Views, and Messages, I’ll have a lot more to say about
multithreading.

Applications and messages

A Be application begins with the creation of an object of a class type derived from
the BApplication class—a class defined in the Application Kit. Figure 1-4 shows

14 Chapter 1: BeOS Programming Overview

how the BApplication class fits into the inheritance hierarchy of the Application
Kit. Creating an application object establishes the application’s main thread, which
serves as a connection between the application and the Application Server. Earlier
in this chapter, you read that a BeOS server is software that provides services to an
application via a software kit. The Application Server takes care of many of the
tasks basic to any application. One such task is reporting user actions to applica-
tions. For instance, if the user clicks the mouse button or presses a key on the
keyboard, the Application Server reports this information to executing applica-
tions. This information is passed in the form of a message, and is received by an
application in its main thread. A message is itself an object—a parcel of data that
holds details about the action being reported. The ability of the operating system
to determine the user’s actions and then use a separate thread to pass detailed
information about that action to a program makes your programming job easier.

An application’s code can explicitly define BMessage objects and use them to pass
information. What I’ve discussed above, however, are system messages that origi-
nate from within the BeOS itself. The movement of the mouse, the pressing of a
keyboard key, a mouse button click in a window’s close button, and a mouse but-
ton click and drag in a window’s resize knob are all examples of system mes-
sages. Each type of system message has a command constant associated with it.
This constant names the type of event the message represents. Examples of com-
mand constants are B_KEY_DOWN, B_MOUSE_DOWN, and B_WINDOW_RESIZED.

Figure 1-4. The inheritance hierarchy for the Application Kit

Application Kit

Other Be Kit

BRoster

BClipboard

BObject
Support Kit

BHandler

BMessage

BMessenger

BMessageFiller

BMessageQueue

BWindow
Interface Kit

BLooper BApplication

BeOS Programming Fundamentals 15

Message loops and message handling

The BeOS defines classes that allow the creation of objects that can work with
messages. The Application Kit defines two such classes: the BLooper class and the
BHandler class. The BLooper class is used to create an object that exists in its
own thread. The purpose of this thread is to run a message loop. As messages
reach a message loop thread, they are placed in a queue. From this queue the
thread extracts and dispatches messages one after another.

A message is always dispatched to an object of the BHandler class. The job of the
BHandler object is to handle the message it receives. How it handles a message is
dependent on the type of message it receives.

As shown back in Figure 1-4, the BLooper class is derived from the BHandler
class. This means that an object of the BLooper class (or of a class derived from
BLooper) can have both a message loop that dispatches messages and can receive
these messages itself for handling. Because the BApplication class and the
BWindow class are derived from the BLooper class, such is the case for the appli-
cation itself and any of its windows. Just ahead you’ll read a little more on how an
application and windows can in fact watch for and respond to messages.

To summarize, a BLooper object has a thread that runs a message loop that dis-
patches messages, and a BHandler object receives and handles these dispatched
messages. Because the BLooper class is derived from the BHandler class, a
BLooper object can dispatch and receive and handle messages. A BHandler
object can only receive and handle messages. From that description it might seem
that all objects that deal with messages might as well be BLooper objects. After all,
the BLooper class provides more functionality. As you read more about messag-
ing, you’ll see why that path isn’t the one to take. Each BLooper object creates a
new thread and dominates it with a message loop—the thread shouldn’t be used
for any other purpose. A BHandler object, on the other hand, doesn’t create a
thread. While having multiple threads in a program can be advantageous, there’s
no benefit to creating threads that go unused.

Defining and Creating Windows

At the heart of the graphical user interface of the Be operating system is the win-
dow. Be applications are window-based—windows are used to accept input from
the user by way of menus and controls such as buttons, and to display output to
the user in the form of graphics and text. The Interface Kit—the largest of the
kits—exists to enable programmers to provide their Be applications with a graphi-
cal user interface that includes windows. It is classes of the Interface Kit that you’ll
be using when you write a program that displays and works with windows.

16 Chapter 1: BeOS Programming Overview

The BWindow class

Almost all Be applications display at least one window and therefore use the
BWindow class—one of the dozens of classes in the Interface Kit. If you look in the
Window.h header file that is a part of the set of header files used in the compila-
tion of a Be program, you’ll find the declaration of the BWindow class. I’ve
included a partial listing (note the ellipses) of this class below. Here you can see
the names of a dozen of the roughly one hundred member functions of that class.
Looking at the names of some of the member functions of the BWindow class gives
you a good indication of the functionality the class supplies to BWindow objects.

class BWindow : public BLooper {

public:
 BWindow(BRect frame,
 const char *title,
 window_type type,
 uint32 flags,
 uint32 workspace = B_CURRENT_WORKSPACE);
...
virtual ~BWindow();

virtual void Quit();
 void Close();

virtual void DispatchMessage(BMessage *message, BHandler *handler);
virtual void MessageReceived(BMessage *message);
virtual void FrameMoved(BPoint new_position);
...
virtual void Minimize(bool minimize);
virtual void Zoom(BPoint rec_position, float rec_width, float rec_
height);
...
 void MoveBy(float dx, float dy);
 void MoveTo(BPoint);
 void MoveTo(float x, float y);
 void ResizeBy(float dx, float dy);
 void ResizeTo(float width, float height);
virtual void Show();
virtual void Hide();
 bool IsHidden() const;
...
 const char *Title() const;
 void SetTitle(const char *title);
 bool IsFront() const;
 bool IsActive() const;

...
}

BeOS Programming Fundamentals 17

If you’re interested in viewing the entire BWindow class declaration,
you can open the Window.h header file. The path that leads to the
Window.h file will most likely be develop/headers/be/interface.
There’s a good chance that your development environment resides
in your root directory, so look for the develop folder there. You can
open any header file from the Edit text editor application or from the
BeIDE. The Metrowerks CodeWarrior BeIDE programming environ-
ment is introduced later in this chapter and discussed in more detail
in Chapter 2, BeIDE Projects.

Deriving a class from BWindow

A Be program that uses windows could simply create window objects using the
BWindow class. Resulting windows would then have the impressive functionality
provided by the many BWindow member functions, but they would be very
generic. That is, while they could be moved, resized, and closed (BWindow mem-
ber functions take care of such tasks), they would have no properties that made
them unique from the windows in any other application. Instead of simply creat-
ing a BWindow object, programs define a class derived from the BWindow class.
This derived class, of course, inherits the member functions of the BWindow class.
Additionally, the derived class defines new member functions and possibly over-
rides some inherited member functions to give the class the properties that win-
dows of the application will need. The following snippet provides an example:

class SimpleWindow : public BWindow {

public:
 SimpleWindow(BRect frame);

virtual bool QuitRequested();
};

From the BeOS naming conventions section of this chapter, you
know that the name of a class that is a part of the BeOS API (such as
BWindow) always starts with an uppercase “B.” As long as my own
classes (such as SimpleWindow) don’t start with an uppercase “B,”
anyone reading my code will be able to quickly spot classes that are
of my own creation.

The SimpleWindow constructor

The SimpleWindow class declares a constructor and one member function. The
definition of the constructor follows.

18 Chapter 1: BeOS Programming Overview

SimpleWindow::SimpleWindow(BRect frame)
 : BWindow(frame, "A Simple Window", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
}

This constructor makes use of a technique common in Be applications: the con-
structor for the class derived from the BWindow class invokes the BWindow class
constructor. Calling the BWindow class constructor is important because the
BWindow constructor arguments provide important information to the window
object that is to be created. In Chapter 5, Drawing, I discuss the four BWindow
constructor parameters in detail. In this introduction, it will suffice for me to say
that the four parameters specify the following for a newly created window object:

• The frame, or content area of the window (the size and screen placement of
the window)

• The name of the window (as it will appear in the window’s tab)

• The type of the window (the look and feel of the window)

• The behavior of the window (whether it has a resize knob, and so forth)

Recall from your C++ background that when the definition of a con-
structor is followed by a single colon and the base class constructor,
the effect is that the base class constructor gets invoked just before
the body of the derived class constructor executes.

In this example, the BWindow constructor’s first argument comes from the sole
argument passed to the SimpleWindow constructor. A hardcoded string serves as
the second argument to the BWindow constructor. The third and fourth arguments
are constants defined in the Window.h header file.

Notice that the body of the SimpleWindow constructor is empty. This tells you that
the only chore of the SimpleWindow constructor is to invoke the BWindow con-
structor. You have to call the BWindow constructor; this function creates a new
window and spawns a new thread of execution in which the window runs, and
starts up a message loop in that same thread. In a Be program, each window
exists in its own thread and each window is notified of system messages that
involve the window. You’ll be pleased to find that the work of maintaining a win-
dow’s thread and of keeping a window informed of system messages (such as a
mouse button click in the window) is taken care of by the operating system. You’ll
be even more pleased to find that for some system messages, even the window’s
response to the message is handled by the BeOS. For instance, you needn’t write
any code that watches for or handles the resizing of a window.

BeOS Programming Fundamentals 19

A window can watch for and respond to messages because the BWindow class
inherits from both the BLooper and BHandler classes (see Figure 1-4). A window
is thus a window (from BWindow), an object that includes a message loop (from
BLooper), and an object that responds to messages (from BHandler). This per-
tains to BWindow objects and, of course, objects created from classes derived from
the BWindow class—such as objects of my SimpleWindow class type.

The SimpleWindow QuitRequested() member function

The SimpleWindow class declares one member function. Here’s the definition of
QuitRequested():

bool SimpleWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);
 return(true);
}

QuitRequested() is actually a member function of the BLooper class. Because
my SimpleWindow class is derived from the BWindow class, which in turn is
derived from the BLooper class, this member function is inherited by the
SimpleWindow class. By redeclaring QuitRequested(), SimpleWindow is over-
riding this function.

If I had opted not to override the QuitRequested() member function in the
SimpleWindow class, it would be the BLooper version of this function that would
execute upon a user mouse button click in a window’s close button. Like my
SimpleWindow version of QuitRequested(), the version of QuitRequested()
defined by the BLooper class returns a value of true. The effect is for an object
of BLooper type to kill the thread it is running in and delete itself. That sounds
much like what I’d like to do in response to the user’s attempt to close a win-
dow—kill the thread in which the window is running. And it is. But in my trivial
example program, I’ll only be allowing a single window to appear on the screen.
When the user closes that window, I’ll want to terminate the application, not just
the window. That’s the action I’ve added to the QuitRequested() function with
this line of code:

be_app->PostMessage(B_QUIT_REQUESTED);

A mouse button click in a window’s close button generates a system message that
gets passed to the window. The window is a type of BLooper, so it captures mes-
sages in its message loop. A window is also a type of BHandler, so it can handle
this message (as opposed to having to pass it to some other type of object for han-
dling). It handles the message by invoking QuitRequested(). If my
SimpleWindow class didn’t override the BLooper version of this function, the
BLooper version would be executed and the window would close—but the

20 Chapter 1: BeOS Programming Overview

application wouldn’t quit. That’s because the BLooper version only kills its own
thread in order to delete itself. Because SimpleWindow does override
QuitRequested(), it is the SimpleWindow version of this function that instead
gets invoked. The SimpleWindow version posts a B_QUIT_REQUESTED message to
the application to tell the application to also quit. The notation used in the above
line (be_app->PostMessage()) is new to you, so it’s worthy of examination.

You already know that a window is a type of BLooper, but there is another very
important type of BLooper: the application itself. An application is always repre-
sented by an application object—an object of the BApplication class that is
defined in the Application Kit (refer back to Figure 1-4 if you need to verify the
relationship between the BLooper class and the BWindow and BApplication
classes). The PostMessage() routine is a member function of the BLooper class.
A BLooper object can invoke this function to place a message in the queue of its
own message loop.

As you’ll see ahead, be_app is a global variable that represents the application
object. This variable is always available for use by your code. The above line of
code invokes the application object’s version of the PostMessage() function. The
message the application object places in its message loop is one that tells itself to
quit.

The variable be_app is a pointer to an object—the use of the mem-
bership access operator (->) to invoke PostMessage() tells you
that. As is often the case in object-oriented programming, a pointer
to an object is simply referred to as the object itself. So in this book,
as well as in other Be documentation, you’ll read about the “applica-
tion object” in discussions that include mention of be_app.

After the call to PostMessage() places a request to kill the application thread in
the application object’s message queue, the SimpleWindow version of
QuitRequested() returns a value of true. Remember, QuitRequested() won’t
be called by my own code—it will be invoked by the system in response to the
mouse button click in a window’s close button. By returning a value of true,
QuitRequested() is telling the system that the requested service should be car-
ried out. The system will then kill the window thread to dispose of the window.

Previously I mentioned that the BeOS took care of system messages involving a
window. I gave the example of window resizing being handled by the operating
system. Yet here I’m discussing how my own code is being used to handle the
system message that gets generated by a click in a window’s close button. It’s
important to restate what I just discussed. It wouldn’t be necessary to include any

BeOS Programming Fundamentals 21

window-closing code in my SimpleWindow class if my goal was only to have a
mouse button click in the close button result in the closing of the window. The
QuitRequested() function defined in BLooper would take care of that by kill-
ing the window’s thread. I, however, also want the program to terminate when a
window’s close button is clicked. To get that extra action, I need to override
QuitRequested().

In summary, a mouse button click in a window’s close box automatically causes
QuitRequested() to execute. If a window class doesn’t override this function,
the window closes but the application continues to run. If the window class does
override this function, what happens is determined by the code in this new ver-
sion of the function. In my SimpleWindow class example, I choose to have this
function tell the application to quit and tell the window to close.

Creating a window object

Declaring a class and defining its constructor and member functions only serves to
specify how objects of this class type will look and behave—it doesn’t actually cre-
ate any such objects. To create and display a window object you’ll first declare a
variable that will be used to point to the object:

SimpleWindow *aWindow;

Before going ahead and allocating the memory for a new window object, your
code should declare and set up a rectangle object that will serve to establish the
size and screen placement of the new window:

BRect aRect;

aRect.Set(20, 20, 200, 60);

The above snippet first declares and creates a rectangle object. The BRect class
was briefly mentioned earlier in this chapter—it is discussed at length in
Chapter 6, Controls and Messages. Next, the Set() member function of the BRect
class is called to establish the dimensions of the rectangle. The Set() function’s
four parameters specify the left, top, right, and bottom coordinates, respectively.

The above call to Set() establishes a rectangle that will be used to create a
window with a left side 20 pixels in from the left of the screen and a top 20 pix-
els down from the top of the screen. While the window that will use this rectan-
gle would seem to have a width of 180 pixels (200–20) and a height of 40 pixels
(60–20), it will actually have a width of 181 pixels and a height of 41 pixels. This
apparent one-pixel discrepancy is explained in the screen and drawing coordi-
nates section of Chapter 5.

22 Chapter 1: BeOS Programming Overview

With the window’s bounding rectangle established, it’s time to go ahead and cre-
ate a new window. This line of code performs that feat:

aWindow = new SimpleWindow(aRect);

To dynamically allocate an object, use the new operator. Follow new with the con-
structor of the class from which the object is to be created. If you glance back at
the section that describes the SimpleWindow constructor, you’ll be reminded that
this function has one parameter—a BRect object that defines the size of the win-
dow and gets passed to the BWindow constructor.

After allocating memory for a SimpleWindow object, the system returns a pointer
to this memory. That pointer is stored in the aWindow variable. Until this new win-
dow is deleted, it can be accessed via this pointer. This line of code provides an
example:

aWindow->Show();

By default, a newly created window is not visible. To display the window, your
code should call the BWindow member function Show() as I’ve done in the above
line.

Let’s end this section by pulling together the code that’s just been introduced.
Here’s a look—with comments—at how a window is typically created in a Be
application:

SimpleWindow *aWindow; // declare a pointer to a SimpleWindow
 // object
BRect aRect; // declare a rectangle object

aRect.Set(20, 20, 200, 60); // specify the boundaries of the
 // rectangle
aWindow = new SimpleWindow(aRect); // create a SimpleWindow object

aWindow->Show(); // display the newly created window

You may have noticed that I used the new operator to create a window object, but
created a rectangle object without a new operator. In Be programs, objects can
always be, and sometimes are, allocated dynamically. That is, the new operator is
used to set aside memory in the program’s heap—as I’ve done with the window.
Some objects, however, are allocated statically. That is, an object variable (rather
than a pointer) is declared in order to set aside memory on the stack—as I chose
to do with the rectangle. Creating an object that resides on the stack is typically
done for objects that are temporary in nature. In the above snippet, the rectangle
object fits that bill—it exists only to provide values for the window’s dimensions.
After the creation of the window, the rectangle object is unimportant.

BeOS Programming Fundamentals 23

If you aren’t familiar with the term heap, I should explain that it is
an area in a program’s address space that exists to hold objects that
are created dynamically during the execution of a program. An
object can be added or deleted from the heap without regard for its
placement in the heap, or for the other contents of the heap. The
stack, on the other hand, is used to store objects in a set order—
objects are stacked one atop the other. Objects can only be added
and removed from the top of the stack.

Defining an Application

Every Be program must create an object that represents the application itself. This
one object is the first one created when a program launches and the last one
deleted when the program quits. One of the primary purposes of the application
object is to make and maintain a connection with the Application Server. It is the
Application Server that takes care of the low-level work such as handling interac-
tions between windows and monitoring input from data entry sources such as the
keyboard and mouse.

The BApplication class

To create the application object, you first define a class that is derived from the
BApplication class and then create a single instance of that class (an instance
being nothing more than another name for an object). From the Application.h
header file, here’s a partial listing of the BApplication class:

class BApplication : public BLooper {

public:
 BApplication(const char * signature);
virtual ~BApplication();
...
virtual thread_id Run();
virtual void Quit();
...
 void ShowCursor();
 void HideCursor();
...
}

Referring back to Figure 1-4, you can see that the BApplication class is both a
type of BLooper and a type of BHandler. This means that an application object is
capable of having a message loop, and is capable of handling messages in that
loop. As it turns out, the application object runs the application’s main message
loop. It is this loop that receives messages that affect the application.

24 Chapter 1: BeOS Programming Overview

Deriving a class from BApplication

Every application defines a single class derived from the BApplication class. A
program that will be communicating with other programs may define a number of
member functions to handle this interapplication communication. A simpler appli-
cation might define nothing more than a constructor, as shown here:

class SimpleApplication : public BApplication {

public:
 SimpleApplication();
};

The SimpleApplication constructor

When a Be program starts, it’s common practice for the program to open a single
window without any help from the user. Because the SimpleApplication()
constructor executes at program launch (that’s when the application object is cre-
ated), it would make sense to let this constructor handle the job of creating and
displaying a window. Here’s a look at how the constructor does that:

SimpleApplication::SimpleApplication()
 : BApplication("application/x-vnd.dps-simpleapp")
{
 SimpleWindow *aWindow;
 BRect aRect;

 aRect.Set(20, 20, 200, 60);
 aWindow = new SimpleWindow(aRect);

 aWindow->Show();
}

Just as my SimpleWindow class invoked the constructor of the class it was derived
from (the BWindow class), so does my SimpleApplication class invoke the con-
structor of the class it is derived from (the BApplication class). Invoking the
BApplication constructor is necessary for a few reasons. The BApplication
constructor:

• Connects the application to the Application Server

• Provides the application with a unique identifying signature for the program

• Sets the global variable be_app to point to the new application object

The connecting of an application to the Application Server has already been men-
tioned. This connection allows the server to send messages to the application. The
application signature is a MIME (Multipurpose Internet Mail Extensions) string. The
phrase application/x-vnd. should lead off the signature. Any characters you want
can follow the period, but convention states that this part of the MIME string con-
sist of an abbreviation of your company's name, a hyphen, and then part or all of

BeOS Programming Fundamentals 25

the program name. In the above example, I've used my initials (dps) as the com-
pany name. I’ve elected to name my program SimpleApp, so the MIME string ends
with simpleapp. The assignment of an application’s signature is described at
greater length in Chapter 2. The global variable be_app was introduced in the ear-
lier discussion of windows. This variable, which is always available for your pro-
gram’s use, always points to your program’s BApplication object.

In the “Creating a window object” section that appears earlier, you saw five lines
of code that demonstrated how a window object could be created and how its
window could be displayed on the screen. If you compare the body of the
SimpleApplication() constructor to those five lines, you’ll see that they are
identical.

Creating an application object

After defining a class derived from the BApplication class, it’s time to create an
application object of that class type. You can create such an object dynamically by
declaring a pointer to the class type, then using the new operator to do the follow-
ing: allocate memory, invoke a constructor, and return a pointer to the allocated
memory. Here’s how that’s done:

SimpleApplication *myApplication;

myApplication = new SimpleApplication();

After the above code executes, myApplication can be used to invoke any of the
member functions of the BApplication class (from which the
SimpleApplication class is derived). In particular, soon after creating an appli-
cation object, your Be program will invoke the BApplication Run() member
function:

myApplication->Run();

The Run() function kicks off the message loop in the application’s main thread,
and then it begins processing messages. Not only is a call to this function impor-
tant, it’s necessary; an application won’t start running until Run() is invoked.

A program’s application object is typically declared in main(), and is accessed by
the global variable be_app outside of main(). So there’s really no need to have
the application object reside in the heap—it can be on the stack. Here’s how the
creation of the application object looks when done using a variable local to
main():

SimpleApplication myApplication;

myApplication.Run ();

26 Chapter 1: BeOS Programming Overview

This second technique is the way the application object will be created in this
book, but you should be aware that you may encounter code that uses the first
technique.

The main() Routine

The preceding pages introduced the C++ code you’ll write to create an applica-
tion object and start an application running. One important question remains to be
answered, though: where does this code go? Because the application object must
be created immediately upon application launch (to establish a connection to the
Application Server), it should be obvious that this code must appear very early in
the program. A C++ program always begins its execution at the start of a routine
named main(), so it shouldn’t come as a surprise that it is in main() that you’ll
find the above code. Here’s a look at a main() routine that is typical of a simple
Be application:

int main()
{
 SimpleApplication myApplication;

 myApplication.Run();

 return(0);
}

To start a program, call Run(). When the user quits the program, Run() com-
pletes executing and the program ends. You’ll notice in the above snippet that
between Run() and return, there is no code. Yet the program won’t start and
then immediately end. Here’s why. The creation of the application object (via the
declaration of the BApplication-derived object myApplication) initiates the
program’s main thread. When Run() is then called, the Run() function takes con-
trol of this main application thread. Run() sets up the main message loop in this
main thread, and controls the loop and thread until the program terminates. That
is, once called, Run() executes until the program ends.

The SimpleApp Example Program

The preceding pages have supplied you with all the code you need to write a Be
application—albeit a very simple one. Because this same code (or slight variations
of it) will appear as a part of the source code for every Be program you write, I’ve
gone to great lengths to explain its purpose. In trying to make things perfectly
clear, I’ll admit that I’ve been a bit verbose—I’ve managed to take a relatively
small amount of starter code and spread it out over several pages. To return your
focus to just how little code is needed to get a Be program started, I’ve packaged
the preceding snippets into a single source code listing. When compiled and

BeOS Programming Fundamentals 27

linked, this source code becomes an executable named SimpleApp. When
launched, the SimpleApp program displays a single, empty window like the one
shown in Figure 1-5.

The SimpleApp source code listing

Presented next, in its entirety, is the source code for a Be application named Sim-
pleApp. As mentioned, all of the code you’re about to see has been presented and
discussed earlier in this chapter.

#include <Window.h>
#include <Application.h>

class SimpleWindow : public BWindow {

public:
 SimpleWindow(BRect frame);
 virtual bool QuitRequested();
};

SimpleWindow::SimpleWindow(BRect frame)
 : BWindow(frame, "A Simple Window", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
}

bool SimpleWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);
 return(true);
}

class SimpleApplication : public BApplication {

public:
 SimpleApplication();
};

SimpleApplication::SimpleApplication()
 : BApplication("application/x-vnd.dps-simpleapp")
{
 SimpleWindow *aWindow;
 BRect aRect;

Figure 1-5. The window that results from running the SimpleApp program

28 Chapter 1: BeOS Programming Overview

 aRect.Set(20, 20, 200, 60);
 aWindow = new SimpleWindow(aRect);

 aWindow->Show();
}

main()
{
 SimpleApplication myApplication;

 myApplication.Run();

 return(0);
}

What the SimpleApp program does

When you launch SimpleApp you’ll see the window pictured in Figure 1-5. You
can click the mouse button while the cursor is positioned over the zoom button in
the window’s tab to expand the window to a size that fills most of your monitor.
Click the mouse button with the cursor again positioned over the window’s zoom
button and the window will return to its previous, much smaller, size. If you click
and hold the mouse button while the cursor is positioned over the window’s tab,
you can drag the window about the monitor. Most important to this discussion is
that the SimpleApp source code includes no code to handle such tasks. The zoom-
ing and moving of windows is handled by the system, not by the SimpleApp code.
This simple demonstration emphasizes the power of the BeOS system software—it
is the system software code (rather than the application code) that supplies much
of the functionality of a program.

What the SimpleApp program doesn’t do

There are a number of things SimpleApp doesn’t do—things you’d expect a “real”
Be application to do. Most notable of these omissions are menus, support of input
by way of controls in the window, and support of output via drawing or writing to
the window. Of course these omissions will be rectified in the balance of this
book. Starting, in fact, with the next chapter.

BeOS Programming Environment
The programming tool you’ll be using to create your Be applications is the BeIDE.
This piece of software is an integrated development environment (IDE) and it runs
on the Be operating system (so the origin of the name BeIDE is pretty evident!).

The development of a new program entails the creation of a number of files
which, collectively, are often referred to as a project. Taking a look at an existing

BeOS Programming Environment 29

project is a good way to get an overview of the files that make up a project, and is
also of benefit in understanding how these same files integrate with one another.
In Chapter 2 I do just that. There you’ll see the HelloWorld example that’s the
mainstay of getting introduced to a new programming language or platform. In
that chapter, you’ll also see how an existing project (such as HelloWorld) can be
used as the basis for an entirely new program. As a prelude to Chapter 2’s in-
depth coverage of this project, take a look at Figures 1-6 and 1-7.

The /boot/apps/Metrowerks folder holds the BeIDE itself, along with other folders
that hold supporting files and projects. Figure 1-6 shows the contents of a folder
that holds two projects, both of which are used for building a standalone Hel-
loWorld application. The project named HelloWorld_ppc.proj is used to build a Be
application that executes on a PowerPC-based machine running the BeOS, while
the project named HelloWorld_x86.proj is used to build a Be application that exe-
cutes on an Intel-based PC. In Figure 1-6 you see that a project consists of a num-
ber of files. The filename extensions provide a hint of the types of files that make
up any one project. A file with an extension of:

.cpp
Is a C++ source code file

.h Is a header file that holds definitions used by certain C++ source code files

Figure 1-6. The files used in the development of the HelloWorld application

30 Chapter 1: BeOS Programming Overview

.rsrc
Is a resource file that holds resources that get merged with compiled source
code

.proj
Is a project file that is used to organize the files used by the project

Also shown in the HelloWorld folder in Figure 1-6 is a makefile—appropriately
named makefile. The BeIDE programming environment supports creation of pro-
grams from the command line. That is, you can supply the BeIDE compiler and
linker with information by editing a makefile and then running that file from the
BeOS Terminal application. In this book I’ll forego the command-line approach to
application development and instead rely on the BeIDE’s project-based model. As
you’ll see in Chapter 2, creating a project file to serve as a means of organizing the
files used in a project takes full advantage of the Be graphical user interface.
Figure 1-7 shows the window that appears when you use the BeIDE to open the
project file for the HelloWorld project.

You use a project file as a sort of command center for one project. From this one
window, you add and remove source code files, libraries, and resource files from
the project. You can also double-click on a source code filename in the project
window to open, and then edit, that file. Using menu items from the File, Project,
and Window menus in the menubar of the project window, you can perform a
myriad of commands—including compiling source code and building an applica-
tion.

Figure 1-7. The project window for the HelloWorld project

31

Chapter 2

In this chapter:
• Development

Environment File
Organization

• Examining an
Existing BeIDE
Project

• Setting Up a New
BeIDE Project

• HelloWorld Source
Code

2
2.BeIDE Projects

The BeOS CD-ROM includes the BeIDE—Be’s integrated development environ-
ment (IDE) that’s used for creating Be applications. This programming environ-
ment consists of a number of folders and files, the most important of which are
mentioned in this chapter. In the early stages of your Be programming studies, the
folder of perhaps the most interest is the one that holds sample code. Within this
folder are a number of other folders, each holding a Be-supplied project. A project
is a collection of files that, when compiled, results in a single Be application. The
best way to understand just what a project consists of is to take a long look at an
existing Be project. That’s exactly what I do in this chapter.

After examining an existing project, you’ll of course want to create your own. A
large part of this chapter is devoted to the steps involved in doing that. Here you’ll
see how to organize classes into header files and source code files, and how the
resource file fits into the scheme of things.

Development Environment File
Organization
You’ll find that an overview of how the many BeIDE items are organized will be
beneficial as you look at existing BeIDE example projects and as you then start to
write your own BeOS program.

The BeIDE Folders

When the BeIDE is installed on your hard drive, the folders and files that make up
this programming environment end up in a pair of folders named develop and
apps on your boot drive.

32 Chapter 2: BeIDE Projects

The /boot/develop folder

In the develop folder you’ll find folders that hold header files, libraries, and devel-
oper tools. Figure 2-1 shows the contents of the develop folder (on a PowerPC-
based machine—a BeOS installation on an Intel-based machine results in one
additional folder, the tools folder). This figure also shows the apps folder. The apps
folder holds over a dozen items, though in Figure 2-1 you just see a single item
(the Metrowerks folder, discussed later).

In the develop folder the lib folder holds a number of library files that can be
linked to your own compiled code. The act of creating a BeIDE project (discussed
later) automatically handles the adding of the basic libraries (libroot.so and libbe.so
at this writing) to the project. As a novice Be programmer, this automatic adding
of libraries to a new project is beneficial—it shields you from having to know the
details of the purpose of each library. As you become proficient at programming
for the BeOS, though, you’ll be writing code that makes use of classes not
included in the basic libraries—so you’ll want to know more about the libraries
included in the develop/lib folder. Of course you could simply add libraries whole-
sale to a project to “play it safe,” but that tack would be a poor one—especially for
programmers developing BeOS applications that are to run on Intel machines. On
Intel, all libraries in a project will likely be linked during the building of an appli-
cation—even if the program uses no code from one or more of the project’s librar-
ies. The resulting application will then be unnecessarily large, or will include
dependencies on libraries that are not needed.

The develop folder headers holds the header files that provide the BeIDE compiler
with an interface to the software kits. Within the headers folder is a folder named
be. Within that folder you’ll find one folder for each software kit. In any one of
these folders are individual header files, each defining a class that is a part of one

Figure 2-1. Some of the key folders and files used in BeOS programming

Development Environment File Organization 33

kit. For instance, the BWindow class is declared in the Window.h header file in the
interface folder. The complete path to that file is /boot/develop/headers/be/inter-
face/Window.h.

The etc folder in the develop folder contains additional developer tools. As of this
writing, the primary component in this folder is files used by programmers who
prefer a makefile alternative to BeIDE projects. To build an application without
creating a BeIDE project, copy the makefile template file from this folder to the
folder that holds your source code files. Then edit the copied makefile to include
the names of the files to compile and link. In this book, I’ll focus on the BeIDE
project model, rather than the makefile approach, for creating an application.

The tools folder in the develop folder is found only on Intel versions of the BeOS.
This folder contains the x86 (Intel) compiling and linking tools and the debugger.

The /boot/apps/Metrowerks folder

Of most interest in the /boot/apps folder is the Metrowerks folder. The BeIDE was
originally an integrated development environment that was created and distrib-
uted by a company named Metrowerks. Be, Inc. has since taken over develop-
ment and distribution of the BeIDE. Though Be now owns the BeIDE, installation
of the environment still ends up in a folder bearing Metrowerks’ name.

In the Metrowerks folder can be found the BeIDE application itself. The BeIDE is
the Be integrated development environment—to develop an application, you
launch the BeIDE and then create a new project or open an existing one.

Also in the Metrowerks folder are a number of subdirectories that hold various sup-
porting files and tools. The plugins folder holds BeIDE plugins that enhance the
capabilities of the BeIDE. The stationery folder contains the basic stationery used
in the creation of a new BeIDE project (stationery being a file that tells the BeIDE
which files (such as which libraries) to include, and what compiler and linker set-
tings to use in a new project). The tools folder contains the compiler and linker
(on the PowerPC version of the BeOS) or links to the compiler and linker (on the
Intel version of the BeOS). On the PowerPC version of the BeOS, you’ll find a
couple of other folders in the Metrowerks folder: the debugger folder (which holds
the PowerPC debugger, of course) and the profiling folder (which holds some
PowerPC profiling tools).

The sample-code folder

Included on the BeOS CD-ROM, but not automatically placed on your hard drive
during the installation of the BeOS, is the sample-code folder. If you elected to
have optional items included during the BeOS installation, this folder may be on

34 Chapter 2: BeIDE Projects

your hard drive. Otherwise, look in the optional folder on the BeOS CD-ROM for
the sample-code folder and manually copy it to your hard drive.

The sample-code folder holds a number of Be-provided projects. Each project,
along with the associated project files, is kept in its own folder. A Be application
starts out as a number of files, including source code files, header files, and a
resource file (I have much more to say about each of these file types throughout
this chapter).

Examining an Existing BeIDE Project
The development of a new program entails the creation of a number of files col-
lectively called a project. Taking a look at an existing project is a good way to get
an overview of the files that make up a project, and is also of benefit in under-
standing how these same files integrate with one another. Because my intent here
is to provide an overview of what a project consists of (as opposed to exploring
the useful and exciting things that can be accomplished via the code within the
files of a project), I’ll stick to staid and familiar ground. On the next several pages
I look at the HelloWorld project.

You’ve certainly encountered a version of the HelloWorld program—regardless of
your programming background. The Be incarnation of the HelloWorld application
performs as expected—the phrase “Hello, World!” is written to a window.
Figure 2-2 shows what is displayed on your screen when the HelloWorld program
is launched.

You may encounter a number of versions of the HelloWorld project—there’s one
in the sample-code folder, and you may uncover other incarnations on Be CD-
ROMs or on the Internet. So that you can follow along with me, you might want to
use the version I selected—it’s located in its own folder in the Chapter 2 folder of
example projects. Figure 2-3 shows the contents of this book’s version of the Hel-
loWorld folder.

As shown in Figure 2-3, when developing a new application, the general practice
is to keep all of the project’s files in a single folder. To organize your own
projects, you may want to create a new folder with a catchy name such as
myProjects and store it in the /boot/home folder—as I’ve done in Figure 2-3. To

Figure 2-2. The window displayed by the HelloWorld program

Examining an Existing BeIDE Project 35

begin experimenting, you can copy this book’s HelloWorld example folder to your
own project folder. That way you’re sure to preserve the original, working version
of this example.

Project File

A Be application developed using the BeIDE starts out as a project file. A project
file groups and organizes the files that hold the code used for one project. By con-
vention, a project file’s name has an extension of .proj. It’s general practice to give
the project file the same name the application will have, with the addition of an
underscore and then ppc for a PowerPC-based project or an underscore and then
x86 for an Intel-based project. In Figure 2-3, you can see that for the HelloWorld
project there are two versions of the project file: HelloWorld_ppc.proj and
HelloWorld_x86.proj.

To open a project file, you can either double-click on its icon or start the BeIDE
application and choose Open from the File menu. In either case, select the project
that’s appropriate for the platform you’re working on. When a project file is
opened, its contents are displayed in a project window. As shown in Figure 2-4, a
project window’s contents consist of a list of files.

Figure 2-3. The files used in the development of a Be application

36 Chapter 2: BeIDE Projects

The files listed in a project window are the files to be compiled and linked
together to form a single executable. This can be a combination of any number of
source code, resource, and library files. The HelloWorld project window holds
three source code files and one resource file, each of which is discussed in this
chapter. The project window also lists one or more libraries. The number of librar-
ies varies depending on whether you’re working on a PowerPC version or an Intel
version of a project. Figure 2-4 shows the PowerPC version of the HelloWorld
project. In this project, the glue-noinit.a, init_term_dyn.o, and start_dyn.o librar-
ies collectively make up the Be runtime support library that handles the dynamic
linking code used by any Be application. An Intel project doesn’t list these librar-
ies—they’re linked in automatically. The libroot.so library handles library manage-
ment, all of the Kernel Kit, and the standard C library. The libnet.so library han-
dles networking, while the libbe.so library is a shared library that contains the C++
classes and the global C functions that encompass many of the other kits. An Intel
project lists only the libbe.so library—the other two libraries are always automati-
cally linked in. The Be kits hold the software that make up much of the BeOS, so
this library is a part of the Be operating system rather than a file included with the
BeIDE environment.

Library filenames will be prefaced with an indicator as to the
project’s target platform (the platform on which the resulting applica-
tion is to run). Figure 2-4 shows a project targeted for the PowerPC
(Power Macintosh or BeBox) platform.

Figure 2-4. The project window for the PowerPC version of the HelloWorld project

Examining an Existing BeIDE Project 37

Project activity is controlled from the Project menu located in the project window
menubar. In Figure 2-5, you see that this menu is used to add files to and remove
files from a project. From this menu, you can compile a single file, build an appli-
cation, and give a built application a test run. In the “Setting Up a New BeIDE
Project” section, you’ll make use of several of the menu items in the Project menu.

Of the many items in the Project menu, the Run/Debug item is the most impor-
tant. Figure 2-5 shows that this bottom menu item is named Run—but this same
item can instead take on the name Debug. When the menu item just above this
one says Enable Debugger, then the Run/Debug item is in the Run mode. When
the menu item just above instead says Disable Debugger, then the Run/Debug
item is in the Debug mode. In either case, choosing Run or Debug causes all of
the following to happen:

• Compile all project files that have been changed since the last compilation
(which may be none, some, or all of the files in the project)

• Link together the resulting object code

• Merge the resource code from any resource files to the linked object code to
make (build) an executable (an application)

• Launch the resulting application in order for you to test it (if no compile or
link errors occurred)

Figure 2-5. The Project menu in the menubar of a BeIDE project window

38 Chapter 2: BeIDE Projects

If the Run/Debug menu is in Debug mode, then the last step in the above list
takes place in the debugger. That is, the application is launched in the appropri-
ate debugger (MWDebug-Be for PowerPC projects and bdb for Intel projects).
Many of the other items in the Project menu carry out a subset of the operations
that are collectively performed by the Run/Debug item.

If you haven’t compiled any Be source code yet, go ahead and give it a try now.
Open the HelloWorld project file. To avoid the debugger during this first test,
make sure the Project menu item just above the Run/Debug item says Enable
Debugger (select the item if it doesn’t say that). Now choose Run from the Project
menu to compile the project’s code and run the resulting HelloWorld application.

Source Code and Header Files

The BeOS is a C++ application framework, so your source code will be written in
C++ and saved in source code files that have an extension of .cpp. To open an
existing source code file that is a part of a project, double-click on the file’s name
in the project window. That’s what I did for the HelloWorld.cpp file that’s part of
the HelloWorld project—the result is shown in Figure 2-6.

Figure 2-6. The source code window for the HelloWorld.cpp source code file

Examining an Existing BeIDE Project 39

Most of your code will be kept in source code files. Code that might be common
to more than one file may be saved to a header file with an extension of .h. While
you can keep a project’s code in as few or as many source code and header files
as desired, you’ll want to follow the way Be does things in its examples.

Project file organization convention

Be example projects organize source code into files corresponding to a conven-
tion that’s common in object-oriented programming. The declaration, or specifier,
of an application-defined class exists in its own header file. The definitions, or
implementations, of the member functions of this class are saved together in a sin-
gle source code file. Both the header file and the source code file have the same
name as the class, with respective extensions of .h and .cpp.

There’s one notable exception to this naming convention. A project usually
includes a header file and source code file with the same name as the project (and
thus the same name as the application that will be built from the project). The
header file holds the definition of the class derived from the BApplication class.
The source code file holds the implementations of the member functions of this
BApplication-derived class, as well as the main() function.

File organization and the HelloWorld project

Now let’s take a look at the HelloWorld project to see if it follows the above con-
vention. Because this example is based on a project from Be, Inc., you can guess
that it does, but you’ll want to bear with me just the same. The point here isn’t to
see if the HelloWorld project follows the described system of organizing files, it’s
to examine an existing project to clarify the class/file relationship.

Back in Figure 2-4 you saw that the HelloWorld project window displays the
names of three source code files: HelloView.cpp, HelloWindow.cpp, and Hel-
loWorld.cpp. While it’s not obvious from the project window, there is also a
header file that corresponds to each of these source code files (opening a source
code file and looking at its #include directives reveals that information). Accord-
ing to the previous discussion, you’d expect that the HelloView.h file holds a list-
ing for a class named HelloView. Here’s the code from that file:

// ---
// HelloView.h

class HelloView: public BView {

public:
 HelloView(BRect frame, char *name);
virtual void AttachedToWindow();
virtual void Draw(BRect updateRect);
};

40 Chapter 2: BeIDE Projects

Looking at the code in the HelloView.cpp file, we’d expect to see the implementa-
tions of the three member functions declared in the HelloView class definition.
And we do:

// ---
// HelloView.cpp

#include "HelloView.h"

HelloView::HelloView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 ...
}

void HelloView::AttachedToWindow()
{
 ...
}

void HelloView::Draw(BRect updateRect)
{
 ...
}

As you can see from the HelloView.cpp listing, I’m saving a little ink by not show-
ing all of the code in the project’s files. Nor do I describe the code I do show.
Here I’m only interested in demonstrating the relationship between a project’s files
and the classes defined by that project. I do, however, take care of both of those
omissions at the end of this chapter in the “HelloWorld Source Code” section.

I said I wouldn’t discuss the HelloWorld source code here. Out of
decency to the very curious, though, I will make a few quick com-
ments. You’re familiar with the SimpleApp example that was intro-
duced in Chapter 1, BeOS Programming Overview. That example
defined two classes. One was named SimpleWindow and was
derived from the BWindow class. It was used to display a window.
The second class was named SimpleApplication and was derived
from the BApplication class. Every Be program needs to define
such a class. The HelloWorld example discussed here defines simi-
lar classes named HelloWindow and HelloApplication. It also
defines a third class named HelloView, which is derived from the
BView class. Before writing or drawing to a window, a program
must define a view—an area in the window to which drawing
should be directed. The SimpleApp program didn’t draw to its win-
dow, so it didn’t need a class derived from the BView class.

Examining an Existing BeIDE Project 41

The second source code file shown in the project window in Figure 2-4 is Hello-
Window.cpp. This file has a corresponding header file named HelloWindow.h. In
this file we expect to find the declaration of a class named HelloWindow—and we
do:

// ---
// HelloWindow.h

class HelloWindow : public BWindow {

public:
 HelloWindow(BRect frame);
virtual bool QuitRequested();
};

The HelloWindow.cpp file contains the source code for the two HelloWindow
member functions, HelloWindow() and QuitRequested():

// ---
// HelloWindow.cpp

#include "HelloWindow.h"

HelloWindow::HelloWindow(BRect frame)
 : BWindow(frame, "Hello", B_TITLED_WINDOW,
 B_NOT_RESIZABLE | B_NOT_ZOOMABLE)
{
 ...
}

bool HelloWindow::QuitRequested()
{
 ...
}

Earlier I stated that the header file that bears the name of the project should hold
the declaration of the project’s application class—the class derived from the
BApplication class. Here you see that the HelloWorld.h header file does indeed
hold this declaration:

// ---
// HelloWorld.h

class HelloApplication : public BApplication {

public:
 HelloApplication();
};

The source code file with the name of the project should hold the code for the
implementation of the member functions of the application class as well as the
main() function. HelloWorld.cpp does hold the following code.

42 Chapter 2: BeIDE Projects

// ---
// HelloWorld.cpp

#include "HelloWindow.h"
#include "HelloView.h"
#include "HelloWorld.h"

int main()
{
 ...
 ...
}

HelloApplication::HelloApplication()
 : BApplication("application/x-vnd.Be-HLWD")
{
 ...
 ...
}

While I omitted the code that makes up the body of each member function of
each class in the HelloWorld project, you may still have picked up on similarities
between the HelloWorld source code and the source code of the Chapter 1 exam-
ple, SimpleApp. In the section “HelloWorld Source Code” I point out all of the
similarities and discuss the differences.

In looking at existing source code, you may encounter a
BApplication constructor argument that’s four characters between
single quotes rather than a long, double-quoted MIME string. The
four-character method is the old way of supplying a signature to an
application, and is dated. The newer MIME string format is dis-
cussed in more detail later in this chapter.

Resources and the Resource File

It’s nice to sum up a programming concept in a single sentence, as in “a pointer is
a reference to a specific area in memory.” Unfortunately, such conciseness isn’t
always possible. Such is the case with the subject of resources. I’ll begin with a
short summation—“a resource is code that represents one element of a pro-
gram”—but adding clarity to that vague explanation necessitates a couple of para-
graphs.

The “element of a program” I speak of is usually thought of as one part, or entity,
of a program’s graphical user interface. For instance, some operating systems make
it easy to represent a window or menu as a resource. But a resource doesn’t have
to represent something graphical. For instance, an application’s signature—a short,

Examining an Existing BeIDE Project 43

unique string that helps the operating system differentiate the application from all
other applications—is anything but graphical. Yet it can be a resource. While an
application’s signature isn’t graphical in nature, the way in which it can be created
and edited can be thought of as graphical. For instance, one could imagine a sim-
ple editor that had a Create Application Signature menu item which, when
selected, displayed a text box in which a short string was typed. The editor would
then be responsible for saving these typed characters as a resource. So it turns out
that rather than representing something that is itself graphical, a resource is usu-
ally something that can be created and edited graphically.

Being graphically editable is typically one trait that makes an element a candidate
to be represented by a resource. Since some programmer will have to design a
special editor that is capable of graphically editing a resource, another require-
ment is that the element be something common to most or all programs.

You’ve just read that different program elements exist as resources for a variety of
reasons. An application’s icon is a good example. First, an icon is a small picture,
so it of course is an entity that lends itself to being easily edited graphically. Sec-
ond, all applications have an icon that is used to represent the application on the
desktop, so it made sense for someone to expend the effort to create an editor
capable of editing icons. Finally, the BeOS needs the data that defines an applica-
tion’s icon even when the application isn’t running, so that it can display the icon
on the desktop at all times.

There are different types of resources, and the BeOS keeps track of these different
types by using a different 32-bit integer for each resource type. As a convenience
to programmers, a four-character constant is often used to define this integer. Con-
sider the icon that represents an application on the desktop. The data that defines
this icon exists as a resource, and its type is ‘ICON.’ Most programmers find it eas-
ier to remember the four-character constant ‘ICON’ than the numerical value this
constant represents.

While a resource type is surrounded in single quotes in this book
and in Be documentation as well, the quotes aren’t a part of the
resource type—a resource type is simply the four characters (or an
actual 32-bit numerical value). The quotes are used only to make it
obvious that a resource type is being discussed. This is important
because a resource type can be in lowercase, and it can include a
space or spaces. Placing an icon type in quotes sets it apart from the
rest of the text that appears with it.

44 Chapter 2: BeIDE Projects

Application-information resource

There’s one other reason that a certain part of a program will exist as a resource—
a reason unrelated to the graphical nature of the element or its ability to be edited
graphically. Because of the way in which resources are stored in an executable,
resource information is available to the BeOS even when the application isn’t
running. The BeOS needs some information about an application in order to
be able to effectively communicate with it. This information can be kept together
in a single resource of type ‘APPI’ (for “application information”) in the applica-
tion. An ‘APPI’ resource consists of the following pieces of information about an
application:

Launch Behavior
The launch characteristics of a Be application can fall into one of three catego-
ries. Single launch is the typical behavior—no matter how many times a user
double-clicks on the application’s icon, only one instance of the executable is
loaded into memory and executed (that is, double-clicking on an application’s
icon a second time has no effect). It’s possible for two versions of a single
launch application to end up in memory if the user makes a duplicate of the
original executable and then double-clicks on each. Exclusive launch is a
behavior that restricts this from occurring. Under no circumstance can two ver-
sions of a program execute at the same time. Multiple launch is a behavior
that allows any number of instances of a single copy of a program to execute
simultaneously.

Background App
An application can forego a user interface and run in the background only. If
an application is marked as a background app, it behaves in this way and
won’t be named in the Deskbar.

Argv Only
An application can be excluded from receiving messages from the BeOS (refer
to Chapter 1 for an introduction to messages). Marking an application as argv
only means that the only information the application receives comes from the
argc and argv command-line arguments that can be optionally passed to the
program’s main() routine.

Signature
Each application has a string that lets the BeOS view the application as unique
from all others. Obviously, no two applications should share the same signa-
ture. For your own test programs, the signature you choose isn’t too impor-
tant. Should you decide to distribute one of your applications to the Be com-
munity, though, you’ll want to put a little effort into selecting a signature. Be’s
recommended format is “application/x-vnd.VendorName-ApplicationName”.

Examining an Existing BeIDE Project 45

Replacing VendorName with your company’s name should provide a unique
signature for your application.

Here I’ll look at ‘APPI’ information for an existing project that already includes a
resource file. In this chapter’s “Setting Up a New BeIDE Project” section you’ll find
information on creating a resource file and editing its ‘APPI’ information. To view
the ‘APPI’ information in a project’s resource file, double-click on its name in the
project window. That launches the FileTypes application (which can also be
launched by choosing it from the preferences folder in the Be menu) and opens
two windows. Figure 2-7 shows the main window of FileTypes.

To view or edit an application’s ‘APPI’ resource information, work in the second of
FileTypes’ two windows. Figure 2-8 shows this window for the HelloWorld appli-
cation.

The application’s launch behavior is determined based on which of the three
Launch radio buttons is on—Single Launch, Multiple Launch, or Exclusive Launch
(only one can be on at any given time).

Whether or not the application is a background app is determined by the status of
the Background App checkbox. Whether or not the application is capable of
receiving messages is determined by the status of the Argv Only checkbox. While
these two items appear grouped together in the Application Flags area, they aren’t
related. Neither, either, or both can be checked at the same time.

Figure 2-7. The main FileTypes window

46 Chapter 2: BeIDE Projects

An application’s signature is based on the MIME string you enter in the signature
edit box of the FileTypes window. If a signature appears here, the string passed to
the BApplication constructor will be ignored (refer to Chapter 1). If no signa-
ture appears here, the string passed to the BApplication constructor will be
used. Thus, by entering a string in the FileTypes window, you’re making the
BApplication constructor argument immaterial. Figure 2-8 shows the signature
for the HelloWorld application used throughout this chapter.

If you make any changes to a project’s resource file, save them by choosing Save
from the File menu of FileTypes (the File menu’s other item, Save into Resource
File, is discussed in the “Setting Up a New BeIDE Project” section of this chapter).

Icon resource

An icon could be described within source code (and, in the “old days,” that was in
fact how icons were described), but the specification of individual pixel colors in
source code is difficult and tedious work. Rather than attempting to specify the
colors of each pixel of an icon from within source code, a BeOS application’s icon
can be created using a special graphical editor built into the FileTypes application.

The graphical editor in FileTypes is used in a manner similar to the way you use a
graphics paint program—you select a color from a palette of colors and then use a

Figure 2-8. Viewing the ‘APPI’ information for the HelloWorld application

Setting Up a New BeIDE Project 47

pencil tool to click on individual pixels to designate that they take on that color.
See Figure 2-9 to get an idea of what the graphical editor in FileTypes looks like.

In FileTypes you simply draw the icon. You can then save the icon to a project’s
resource file so that each time an application is built from the project, your icon is
merged with the application (and becomes the icon viewed on the desktop by the
user). To view or edit the icon stored in the resource file of an existing project,
you first double-click on the resource filename in the project window to open the
resource file. After FileTypes opens the resource file, double-click on the small
icon box located at the upper right of the FileTypes window; you’ll see the win-
dow shown in Figure 2-9.

Setting Up a New BeIDE Project
In the previous section, you read that an application starts as a Be project. The Be
project consists of a project file, source code files, header files, libraries, and
a resource file. The project file itself doesn’t hold any code; it serves as a means to
organize all the other files in the project. The project file also serves as the project

Figure 2-9. The icon editing window and palettes displayed by FileTypes

48 Chapter 2: BeIDE Projects

“command center” from which you compile code and build and test the execut-
able. A close look at the HelloWorld project clarified many of these concepts.

When you set out to develop your own application, you’ll find that you may be
able to save some effort if you don’t start from scratch, but instead duplicate a
folder that holds the files of an existing project. Consider this scenario: I want to
create a very simple children’s game—perhaps a tic-tac-toe game. I know that the
HelloWorld project results in a program that displays a single window and draws
to it. That represents a good part of what my game will need to do, so it makes
sense for me to base my game on the HelloWorld project, and then modify and
add to the HelloWorld source code as needed. If your program will be a complex
one, or one for which you can’t find a similar “base” program to start with, this
approach won’t be as fruitful. In such cases you’ll want to start with a new project.

In this section, I’ll discuss each step of the process of setting up a new project first
in general terms. I’ll also carry out each step using the HelloWorld project to pro-
vide a specific example. So you see, I had good reason for devoting the previous
several pages to a look at the HelloWorld project. While I use the small Hel-
loWorld project for simplicity, the steps discussed on the following pages apply
just as well to projects of a much larger scale.

In the above paragraphs, I refer to using code written by others.
Before doing that you’ll of course want to make sure that you’re
allowed to do so! The BeOS CD-ROM comes with a number of
example projects that fall into the category of projects that are avail-
able for your own personal use. The source code that makes up the
example projects is copyright Be, Inc., but Be, Inc. has granted unre-
stricted permission for anyone to use and alter any of this source
code. I’ve taken advantage of this fact and used these projects as the
basis for the numerous examples that appear in this book. In turn,
you’re free to use without restrictions the example code in this book
for your own projects.

The following is an overview of the major steps you’ll carry out each time you cre-
ate a new project. While on the surface it may appear that performing these steps
involves a lot of work, you’ll find that after you’ve set up a few new projects the
process becomes quite routine, and doesn’t take much time at all. All of the steps
are discussed in the sections that follow this list.

1. Find an existing project that is used to build a program that has similarities to
the program you’re to develop.

2. Duplicate the existing project folder and its contents.

Setting Up a New BeIDE Project 49

3. Open the new project folder and change the names of the project, source
code, header, and resource files to names that reflect the nature of the project
you’re working on.

4. Open the newly renamed project and drag the renamed source code files and
resource file from the folder and drop them into the project window.

5. Remove the now obsolete source code and resource filenames from the
project window.

6. Edit the name of the constants in the #ifndef directive in the header files and
the #includes in the source files.

7. Test the project’s code by building an application (here you’re verifying that
the original source code is error-free before you start modifying it)

8. If there are library-related errors, create a new project (which will automati-
cally include the most recent versions of each library) and add the source
code files and resource file to the new project.

9. If there are compilation errors, correct the source code that caused the errors.

10. Open the header files and change application-defined class names in the
header files to names that make sense for the project you’re working on.

11. Change all usage of application-defined class names in the source files to
match the changes you made in the header files.

12. Open the resource file using FileTypes and modify any of the ‘APPI’ resource
information and the icon.

13. Set the name for the executable to be built.

14. Build a new application from the modified BeIDE project.

No new functionality will have been added to the program that gets built from the
new project—it will behave identically to the program that results from the origi-
nal project. So why go through the above busy-work? Executing the above steps
results in a new project that includes source code files that define and use classes
with new names—names that make sense to you. This will be beneficial when you
start the real work—implementing the functionality your new program requires.

The above list isn’t an iron-clad set of steps you must follow. Other
programmers have their own slightly (or, perhaps, very) different
guidelines they follow when starting a new project. If you’re new to
the BeIDE, the BeOS, or both, though, you might want to follow my
steps now. As you get comfortable with working in a project-based
programming environment, you can vary the steps to match your
preferred way of doing things.

50 Chapter 2: BeIDE Projects

Selecting and Setting Up a Base Project

As mentioned, you’ll get off to the best start in your programming endeavor by
finding a project that matches the following criteria:

• The application that is built from the original project has several features com-
mon to the program you’re to develop.

• You have access to the project and all its source code and resource files.

• It’s made clear that the project’s source code can be modified and redistrib-
uted, or you have the developer’s permission to do so.

Once you’ve found a project that meets the above conditions, you’ve performed
Step 1 from the previous section’s numbered list.

Step 2 involves creating a copy of the project folder and its contents. After doing
that, rename the new folder to something appropriate for the project you’re
embarking upon. Usually a project folder has the same name that the final applica-
tion that gets built from the project will have. Here I’m making a new project
based on the HelloWorld project only for the sake of providing a specific exam-
ple, so after duplicating the HelloWorld folder, I’ll simply change the name of the
folder from HelloWorld copy to MyHelloWorld (each of these folders can be found
in the Chapter 2 examples folder available on the O’Reilly web site).

Step 3 is the renaming of the project-related files. Double-click on the new folder
to reveal its contents. Click on the name of any one of the header files and type a
new name for the file. For my new MyHelloWorld project I’ll rename the Hello-
View.h, HelloWindow.h, and HelloWorld.h header files to MyHelloView.h, MyHel-
loWindow.h, and MyHelloWorld.h, respectively. Next, rename the source code files
(so, for example, HelloWorld.cpp becomes MyHelloWorld.cpp) and the resource
file (here, from HelloWorld.rsrc to MyHelloWorld.rsrc). Now rename the project
file. Again, choose a name appropriate to the project. Typically, the project file has
the same name the application will have, with an extension of x86.proj or ppc.proj
added. I’ll change the PowerPC version of the HelloWorld project by updating the
project filename from HelloWorld_ppc.proj to MyHelloWorld_ppc.proj.

Steps 4 and 5 are performed to get the project to recognize the newly named files.
After the name changes are made, double-click on the project file to open it. The
project window will appear on your screen. If you renamed a file from the desk-
top, the project file that includes that file will list it by its original, now invalid,
name. That necessitates adding the file by its new name and removing the origi-
nal file from the project. To add the newly named files, select them from the desk-
top (click on each) and drag and drop them into the project window. In the
project window, drag each to its appropriate group (for instance, place MyHel-
loWorld.cpp in the Sources group). To remove the original files from the project,

Setting Up a New BeIDE Project 51

select each and choose Remove Selected Items from the Project menu. For the
MyHelloWorld project, the resulting project window looks like the one shown in
Figure 2-10.

Testing the Base Project

The new project now has newly named files in it, but these files hold the code
from the original project. Before adding new functionality to the code, verify that it
compiles without error (this is Step 7 from the previous list). Before compiling the
code, though, perform Step 6—update the #includes at the top of each source
code file so that they match the new names of the header files. For example, near
the top of MyHelloView.cpp is this #include:

#ifndef HELLO_VIEW_H
#include "HelloView.h"
#endif

I’ve changed the HelloView.h header file to MyHelloView.h, so this #include
needs to be edited. While I’m doing that, I’ll change HELLO_VIEW_H to the more
appropriate MY_HELLO_VIEW_H (though I could leave this as is—it’s simply a con-
stant I define in the MyHelloView.h header file).

#ifndef MY_HELLO_VIEW_H
#include "MyHelloView.h"
#endif

Because I changed the name of the constant HELLO_VIEW_H in the MyHelloView.
cpp source file, I need to change this same constant in the MyHelloView.h header
file. Originally the header file contained this code:

#ifndef HELLO_VIEW_H
#define HELLO_VIEW_H

Figure 2-10. The MyHelloWorld project window with renamed files in it

52 Chapter 2: BeIDE Projects

Now that code should look like this:

#ifndef MY_HELLO_VIEW_H
#define MY_HELLO_VIEW_H

Finally, test the code by choosing Run from the Project menu. Later, if you experi-
ence compilation errors after you’ve introduced changes to the original code,
you’ll know that the errors are a direct result of your changes and not related to
problems with the original code.

If the building of an application is successful, Steps 8 and 9 are skipped. If the
attempt to build an application results in library-related errors (such as a library
“file not found” type of error), you’re probably working with a project created
under a previous version of the BeIDE. The easiest way to get the proper libraries
into a project is to follow Step 8—create a new project based on one of the Be-
supplied project stationeries. A new BeIDE project file can be created by choosing
New Project from the File menu of an existing project. When you do that, the New
Project dialog box appears to let you choose a project stationery from which the
new project is to be based. The project stationery is nothing more than a template
that specifies which libraries and project settings are best suited for the type of
project you’re creating. Here are definitions of the more important stationeries:

BeApp
Stationery that links against the standard libraries applications need.

EverythingApp
Stationery that links against all of the Be libraries.

KernelDriver
A basic template for writing a kernel driver.

SharedLib
Stationery used to create a basic library or add-on, this links against the basic
Be libraries.

BeSTL
Stationery used to create an application that includes the C++ standard librar-
ies (including STL and the basic iostream functions).

In Figure 2-11, I’m choosing the BeApp project stationery under the ppc heading in
order to create a project that’s set up to generate a Be application targeted for the
PowerPC platform (the list of project stationeries you see may differ depending on
the version of the BeOS you’re using and the processor (PowerPC or Intel) in your
machine). Note that when creating a new project you’ll want to uncheck the Cre-
ate Folder checkbox in the New Project dialog box and specify that the new
project end up in the folder that holds all the renamed files.

Setting Up a New BeIDE Project 53

The act of creating a new project doesn’t provide you with any source code files
or a resource file—you’ll need to repeat Step 4. That is, drag and drop the neces-
sary files from the desktop folder to the new project window.

If the building of an application results in compilation errors, now’s the time to
correct them. This is Step 9. Only after you successfully build an application does
it make sense to start making changes to the project’s source code.

Preliminary Code Changes

You’ll of course be making changes to the source code in the source code files.
The most interesting of these changes will be the ones that turn the original code
into code that results in an application that is distinctly your own. First, however,
you need to make some preliminary source code changes. You’ve changed the
names of the files, including the header files, so you’ll need to search for and
change header file references in the source code files. You’ll also want to change
the names of the classes already defined to match the names you’ve given to the
header files.

Header file code changes

Step 10 in the list of new project setup tasks is the changing of application-defined
class names in the header files. Begin the changes by opening any one of the
header files. The quickest way to do that is to click on the small arrow icon to the
right of one of the source code filenames in the project window. Doing that dis-
plays a menu that lists the header files included in the selected source code file.
To open a header file, simply select it from this popup menu. With a header file
open, make the following changes to the code.

Figure 2-11. Choosing a stationery on which to base a new project

54 Chapter 2: BeIDE Projects

• Add the new name of the file to the file’s description comment section.

• If you haven’t already done so, rename the application-defined constant that is
used in the #ifndef and #define preprocessor directives.

• Rename the file’s application-defined class.

• Rename the class constructor to match the new name you’ve give to the appli-
cation-defined class.

The above steps are carried out in the same way regardless of the project you start
with. To provide a specific example of how these changes are implemented, I’ll
change the HelloView.h header file from the HelloWorld project. The following
listing shows the original version of the HelloView.h file. Refer to it in the discus-
sion that follows the listing.

// ---
 HelloView.h
 Copyright 1995 Be Incorporated, All Rights Reserved.

#ifndef HELLO_VIEW_H
#define HELLO_VIEW_H

#ifndef _VIEW_H
#include <View.h>
#endif

class HelloView : public BView {

public:
 HelloView(BRect frame, char *name);
virtual void AttachedToWindow();
virtual void Draw(BRect updateRect);
};

#endif

// ---

The first change to the header file, the altering of the file’s descriptive comment,
needs little discussion. You may want to leave the original name intact as a cour-
tesy to the original author. I’ve done that in the MyHelloView.h file (the listing of
which follows this discussion).

The HELLO_VIEW_H constant is defined to eliminate the possibility of the code in
this header file being included more than once in the same source code file. Ear-
lier I changed its name to MY_HELLO_VIEW_H to reflect the new name I’ve given to
this header file (MyHelloView.h):

#ifndef MY_HELLO_VIEW_H
#define MY_HELLO_VIEW_H

Setting Up a New BeIDE Project 55

The _VIEW_H constant is a BeOS-defined constant (it’s used to ensure that the
BeOS header file View.h doesn’t get included multiple times) so it can be left as is.
If you aren’t clear on the usage of the #ifndef preprocessor directive in Be files,
refer to the “Header Files and Preprocessor Directives” sidebar.

The original class defined in the HelloView.h file was named HelloView. I’ve
renamed that class to MyHelloView to match the name I’ve given the header file. I
also changed the name of the class constructor from HelloView() to
MyHelloView(). All of lines of code that include changes are shown in bold in
the following listing of MyHelloView.h:

// ---
 MyHelloView.h
 Dan Parks Sydow
 1999

 Based on source code from:
 HelloView.h
 Copyright 1995 Be Incorporated, All Rights Reserved.
// ---

#ifndef MY_HELLO_VIEW_H
#define MY_HELLO_VIEW_H

#ifndef _VIEW_H
#include <View.h>
#endif

class MyHelloView : public BView {

public:
 MyHelloView(BRect frame, char *name);
virtual void AttachedToWindow();
virtual void Draw(BRect updateRect);
};

#endif

// ---

Notice that I’ve stopped short of making any substantial changes to the applica-
tion-defined class. While you may be tempted to “get going” and start adding new
member functions to a class, it’s best to wait. First, make all the name changes in
the header files. Then update the source code files so that any usage of applica-
tion-defined classes reflects the new names (that’s discussed next). Finally, verify
that everything works by compiling the code. Only after you’re satisfied that all the
preliminaries are taken care of will you want to start making significant changes to
the code.

56 Chapter 2: BeIDE Projects

For the MyHelloWorld project, I’d repeat the above process on the MyHelloWin-
dow.h and MyHelloWorld.h header files.

#endif source code file code changes

After you make the changes to the header files, it’s time to update the source code
files—this is Step 10 in the list of new project setup steps. Begin by double-click-
ing on one of the source code filenames in the project window. Then make the
following changes to the code:

Header Files and Preprocessor Directives
In a large project that consists of numerous source code files and header files,
the potential for a source code file to include the same header file more than
once exists. Consider three files from a large project: source file S1.cpp and
header files H1.h and H2.h. If S1.cpp includes both H1.h and H2.h, and H1.h
includes H2.h, then S1.cpp will include the code from H2.h twice (once directly
and once indirectly via H1.h). Such an event results in a compilation error that,
given the dependency of the files, can be difficult to remedy.

To coordinate the inclusion of header file code in source code files, Be projects
typically use the “if not defined” (#ifndef) preprocessor conditional directive
to define a constant in a header file and to check for the definition of that con-
stant in a source code file. This is a standard technique used by many C and
C++ programmers—if you’re familiar with it, you can feel free to skip the
remainder of this sidebar.

A header file in a Be project begins by checking to see if a particular constant
is defined. If it isn’t defined, the header file defines it. Because all the remaining
code in the header file lies between the #ifndef and the #endif directives,
if the constant is already defined, the entire contents of the header file are
skipped. Here’s that code from the HelloWorld project’s HelloView.h header
file:

#ifndef HELLO_VIEW_H
#define HELLO_VIEW_H
// class declaration
#endif

Before including a header file, a source code file checks to see if the constant
defined in the header file is in fact defined. If it isn’t defined, the source code
file does include the header file. Here’s that code from the HelloView.cpp
source code file:

#ifndef HELLO_VIEW_H
#include "HelloView.h"

Setting Up a New BeIDE Project 57

• Add the new name of the file to the file’s description comment section.

• Rename the application-defined constant that is used in the #ifndef and
#define preprocessor directives to match the renamed constant in the corre-
sponding header file.

• Rename any header filenames that follow #include directives to match the
renamed header files.

• Rename all occurrences of any application-defined classes to match the
renamed classes in the other project header files.

As with header files changes, the source code file changes listed above apply to
any project. Again, I’ll use a file from the HelloWorld project to provide a specific
example. The following listing shows the original version of the HelloView.cpp file:

// ---
 HelloView.cpp
 Copyright 1995 Be Incorporated, All Rights Reserved.
// ---

#ifndef HELLO_VIEW_H
#include "HelloView.h"
#endif

HelloView::HelloView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 ...
}

void HelloView::AttachedToWindow()
{
 ...
}

void HelloView::Draw(BRect updateRect)
{
 ...
}

// ---

Next you’ll see the edited version of HelloView.cpp—it’s now the code for a file
named MyHelloView.cpp. Because there are no occurrences of any application-
defined class names in the code in the bodies of any of the member functions, I’ve
omitted that code for brevity.

// ---
 MyHelloView.cpp
 Dan Parks Sydow

58 Chapter 2: BeIDE Projects

 1999

 Based on source code from:
 HelloView.cpp
 Copyright 1995 Be Incorporated, All Rights Reserved.
// ---

#ifndef MY_HELLO_VIEW_H
#include "MyHelloView.h"
#endif

MyHelloView::MyHelloView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 ...
}

void MyHelloView::AttachedToWindow()
{
 ...
}

void MyHelloView::Draw(BRect updateRect)
{
 ...
}

// ---

These steps need to be repeated for each source code file in the project. As you
do that, note that a source code file may include occurrences of application-
defined classes other than the class defined in the corresponding header file. Con-
sider this snippet from the original HelloWorld.cpp file:

HelloApplication::HelloApplication()
 : BApplication("application/x-vnd.Be-HLWD")
{
 HelloWindow *aWindow;
 HelloView *aView;
 BRect aRect;

Here you see that the constructor for the application-defined HelloApplication
class declares variables of two different application-defined classes: HelloWindow
and HelloView. After renaming the HelloWorld.cpp file to MyHelloWorld.cpp, the
changes to the above snippet would turn it into code that looks like this:

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-myworld")
{
 MyHelloWindow *aWindow;
 MyHelloView *aView;
 BRect aRect;

Setting Up a New BeIDE Project 59

The astute reader will have noticed that I slipped an extra change in the above
snippet. If you didn’t spot it, look at the parameter to the BApplication() con-
structor. Later in this chapter you’ll see that I also use the FileTypes application to
place this same signature in the project’s resource file.

A quicker way to make the changes

You may have found all this talk about manually editing header files and source
code files a little disconcerting. Before your level of frustration rises too high, it’s
time for me to make a confession. There is a shortcut to poring over page after
page of code to track down occurrences of class names that need to be changed—
a shortcut I didn’t mention at the onset of the “Preliminary Code Changes” sec-
tion. The BeIDE has a search and replace utility that makes finding and replacing
names (such as constants and class names) a snap.

Before discussing how to quickly make global changes to all of the files in a
project, I’ll answer the one question that’s on your mind: Why did I bother with
the drawn-out explanation of exactly what changes to make if everything could be
done with a few mouse clicks? I went laboriously through all the changes so that
you’d know what you’re changing and why.

Now, here’s a revised method for changing the names of constants, files, and
classes that appear in the header files and source code files of a project:

1. Choose Open from the BeIDE main menu in the dock and open a header file.

2. Choose Find from the Search menu of the opened header file.

3. Set up the Find window to search the project’s source code files and header
files.

4. Enter a name to change in the Find box and the name to replace it with in the
Replace box of the Find window.

5. Click on the Find button in the Find window.

6. After verifying that the found text should indeed be replaced, click on the
Replace & Find button in the Find window.

7. Repeat Step 6 until all occurrences of the name have been found and
changed.

8. Repeat Steps 4 though 8 for each name to be changed.

You can speed things up by using the Replace All button once in place of the
Replace & Find button several times. However, it’s safer to use the Replace & Find
button so that you can take a quick look at each name the BeIDE is changing.

If you want to perform a multiple-file search, the file icon located on the left side
of the Find window must be displaying two files and the Find window must be

60 Chapter 2: BeIDE Projects

expanded as shown in Figure 2-12. If the file icon is displaying a single file, click
on the icon (it toggles between one and two files). If the Find window isn’t
expanded (the Multi-File Search section won’t be visible), click on the small blue
arrow located to the left of the file icon (the arrow expands and collapses the Find
window).

With the Find window set for multiple-file searching, specify which files are to be
included in a search. Check the Sources checkbox to designate that all of the
source code files listed in the project window are to be searched. To specify that
the header files also be included in the search, you’ll be tempted to check the
Project Headers checkbox. At this point, however, the BeIDE doesn’t know that
the project source code files will be including the renamed header files—so it
won’t know to add the desired files to the Multi-File Search list. Instead, click on
the Others button. In the Select a File to Search window that appears, Shift-click
on the names of each of the renamed header files. That is, hold down the Shift
key and successively click the mouse button while the cursor is over each header
filename in the window’s list of files. Click the Add button, then the Done button.

To quickly change a name, enter the name to change in the Find box, enter the
new name in the Replace box, and click the Replace All button. The BeIDE will
search all the project files for the name to find and replace each occurrence with
the new name. For my MyHelloWorld project I began by searching for the con-
stant HELLO_VIEW_H and replacing it with the new constant MY_HELLO_VIEW_H.

Figure 2-12. The BeIDE Find window set up to search all of a project’s files

Setting Up a New BeIDE Project 61

You can see in Figure 2-12 that the Find window is set up to perform that act.
When done (it will only take a moment), enter another name and another new
name in the Find and Replace boxes and again click on the Replace All button.
Repeat these steps until all of the necessary changes have been made.

A click on the Replace All button quickly searches all of the files in a project and
replaces all hits with new text. That makes the BeIDE Find facility a very power-
ful utility—too powerful if you aren’t sure what you’re changing. Hence my rea-
soning for describing this technique after the discussion on just what needs to be
changed in the files of a project. Now, if you make a mistake that results in an
error when you compile the project’s code, you’ll know where to look and what
to look for to remedy the errors.

Testing the changes

After making all the changes to a project, compile the code by choosing Make
from the Project menu in the project window’s menubar. This menu item com-
piles all touched files and then builds a new version of the application. A touched
file is one that has been edited since the last time the file was compiled. Before
moving on to the “real” code changes—the possibly extensive changes and addi-
tions you’ll be making to implement your program’s functionality—you’ll want to
verify that the “cosmetic” changes you’ve just made didn’t introduce any errors.

Editing the Resource File

You’ll want to give your application a unique signature and its own icon. The
‘APPI’ and ‘ICON’ resources are both located in the project’s resource file, so the
FileTypes application is involved in both these acts.

Changing the signature

To edit the signature to be merged with the application built from the new project,
double-click on project’s resource file. This launches the FileTypes application and
opens a window that holds ‘APPI’ information (refer back to Figure 2-8 for an
example). To complete Step 12 of the new project setup process, modify the
‘APPI’ information as needed. Most likely this will involve nothing more than
entering a new, unique signature to be assigned to the application that makes use
of the resource file. For the MyHelloWorld project, I changed the signature in the
MyHelloWorld.rsrc file to application/x-vnd.dps-myworld.

After changing the signature, you can choose Save from the File menu of the File-
Types window to save the change—but don’t close the window just yet.

62 Chapter 2: BeIDE Projects

Changing the icon

To modify the icon housed in the resource file, double-click on the icon box
located in the upper right corner of the Application Type window. Then draw
away. That, in brief, is the rest of Step 12.

The Tracker—the software that allows you to work with files and launch applica-
tions in the BeOS—displays icons in one of two sizes: 32 pixels by 32 pixels or 16
pixels by 16 pixels. The larger size is the more commonly used, but you’ve seen
the smaller size on occasion. For example, the active application displays its
smaller icon in the area you click on to reveal the items in the main menu. For
each icon resource, you’ll draw both the larger and smaller variants. At the top
right of the window back in Figure 2-9, you’ll see the editing area for both vari-
ants of the icon in the HelloWorld.rsrc file. Clicking on either icon displays an
enlarged, editable view of that icon in the editing area.

In the top right area of the window, you’ll see a total of four actual-size icons. You
can refer to these views to see how the 32-by-32 version and the 16-by-16 version
will look on the desktop. There are two views of each sized icon to demonstrate
how each looks normally and when selected (a selected icon has extra shading
added by the BeOS).

You’ll treat the large and small versions of an icon separately—editing one ver-
sion has no effect on the other version. IconWorld will assign the larger version a
resource type of ‘ICON’ and the smaller version a resource type of ‘MICN’ (for
“mini-icon”). Because each icon has both a large and small version, IconWorld will
save the two versions of the icon as a single unit.

You’ll of course want to replace the original icon with one of your own creation.
To do that, use the drawing tools and color palette to erase the old icon and draw
a new one. Creating an icon in FileTypes is a lot like creating a small picture in a
paint program, so you’re on familiar ground here. If you aren’t artistically inclined,
at least draw a simple icon that distinguishes your program from the other pro-
gram icons on your desktop. When done, click on the smaller editing area and
then draw a smaller version of the icon. That’s what I did for the MyHelloWorld
example I’m working on. I show off my creative abilities back in Figure 2-9.

If you’re developing a program that will be distributed to others (rather than one
that will be for your personal use only), you can find or hire someone else to
draw a 32-pixel-by-32-pixel and a 16-pixel-by-16-pixel picture for you at a later
time.

When you’re done with the new icon, choose Save from the File menu of the
Icon-O-Matic window, then close the Icon-O-Matic window. Now choose Save

Setting Up a New BeIDE Project 63

from the File menu of the FileTypes window. Close the FileTypes window. This
completes Step 12.

Setting Project Preferences

Besides keeping track of the files that hold what will become a program’s execut-
able code, a project also keeps track of a variety of project settings. The font in
which source code is displayed and the types of compilation errors to be dis-
played are just two examples of project settings. There’s a good chance that most
of the copied project’s settings will be fine just as they are. You will, however,
want to make one quick change. Step 13 specifies that you need to set the name
of the application about to be built—you do that in the Settings window.

To display the project Settings window, choose Settings from the Window menu in
the project file. On the left side of the window that appears is a list that holds a
variety of settings categories. Click on the xxx Project item under the Project head-
ing in this list (where xxx specifies the target, such as PPC for PowerPC). The Set-
tings window responds by displaying several project-related items on the right side
of the window.

From the displayed items you’ll set the name that will be assigned to the applica-
tion that gets built from the project. The MyHelloWorld project is used to build a
program that gets the name MyHelloWorld. Note that while the file type may look
like a program signature (they’re both MIME strings), the two aren’t the same. The
file type specifies the general type of file being created, such as a Be application.
The file signature (assigned in the FileTypes window, as discussed earlier) gives an
application a unique signature that differentiates the file from all other applica-
tions.

After changing the information in the File Name field, click the Save button. This is
the only setting change you need to make, though you’re of course free to explore
the Settings window by clicking on any of the other setting topics in the list.

Testing the Changes

After making all your changes, you’ll want to test things out—that’s the last step in
my list of how to create a new project. Choose Run from the Project menu in the
project window’s menubar. This will cause the BeIDE to:

1. Compile any files that have been touched (altered) since the last build.

2. Link the compiled code to build an application.

3. Merge resources from the resource file with the built application.

4. Run the application.

64 Chapter 2: BeIDE Projects

To verify that your changes to the resource file were noted by the BeIDE, return to
the desktop and look in your project folder. There you should find your new
application, complete with its own icon. Figure 2-13 shows the MyHelloWorld
folder as it looks after my test build of a PowerPC version of the program.

The MyHelloWorld folder in Figure 2-13 shows one folder and two files that I had
no hand in creating. The (Objects) folder holds, obviously enough, the object code
that the BeIDE generated when compiling the project’s source code. The .xMAP
and .xSYM files were generated by the BeIDE during the building of the project’s
application. The files in the (Objects) folder and the .xMAP and .xSYM files aren’t
directly of use to you—they’re used by the BeIDE during linking and debugging. If
I were working on a PC and did a build of an Intel version of the MyHelloWorld
program, my project folder would look a little different. There’d be no .xMAP or
.xSYM files, as these are PowerPC-only. Instead, the information in these files
(namely the symbol table and the debugging information for the application)
would be contained in the ELF binary itself. There might also be a number of .d
files, which are temporary dependency files the compilers create (and which may
be better disposed of in a future release of the BeOS).

Figure 2-13. The MyHelloWorld project folder after building an application

HelloWorld Source Code 65

What’s Next?

After reading this section you know how to create a project that’s ready for your
own use. Now you need to make the source code changes and additions that will
cut the ties from the original project on which you’re basing your new program.
So you need to know a lot more about writing BeOS code. The next section starts
you in that direction, and the remainder of this book takes you the rest of the way.

HelloWorld Source Code
In the previous section, you saw that a new BeIDE project is usually based on an
existing project. Once you have a mastery of BeOS programming, you’ll be able to
look at existing projects and recognize which one or ones result in a program that
bears some similarity to the program you intend to develop. Until that time, it
makes sense to use a small project such as the HelloWorld project as your starting
point. If you follow my advice and do that, your new project will hold the
HelloWorld source code. You got a glimpse of some of that code earlier in this
chapter. Because you’ll be modifying the HelloWorld source code, you’ll find it
beneficial to have a good understanding of that code. This section provides you
with that.

The HelloWorld/SimpleApp/MyHelloWorld
Connection

The HelloWorld project defines three classes: HelloView, HelloWindow, and
HelloApplication. Two of these classes, HelloWindow and Hello-
Application, bear a strong resemblance to the SimpleWindow and Simple-
Application classes from the SimpleApp example that was introduced in
Chapter 1. Actually, the opposite is true—the SimpleApp classes are based on the
HelloWorld classes.

To create the SimpleApp project, I started with the HelloWorld project. I then fol-
lowed this chapter’s steps for renaming the project files and renaming the applica-
tion-defined classes. If you think that my following a Chapter 2 process while writ-
ing Chapter 1 was a good trick, just wait—there’s more! I then wrote SimpleApp
such that it became a simplified version of the HelloWorld program. Not many
books can lay claim to simplifying what is traditionally the most basic program that
can be written for an operating system.

In order to keep this book’s first example small and simple, I deleted the Hello-
View.cpp and HelloView.h files and removed any references to the class that was
defined and implemented in those two files—the HelloView class. I also stripped
out the #ifndef and #define preprocessor directives to further simplify things.

66 Chapter 2: BeIDE Projects

Now that the relationship between the Chapter 1 SimpleApp example project
and the Be-supplied HelloWorld project has been established, where does the
MyHelloWorld project fit in? As you saw in this chapter, the MyHelloWorld project
also came about by duplicating the HelloWorld project. I renamed the files and the
application-defined classes, but I left all the other code intact. Building an applica-
tion from the MyHelloWorld project results in a program indistinguishable from
the application that gets built from the HelloWorld project (except for the look of
the application’s icon).

In this section I describe the code that makes up the HelloWorld project. At the
end of this section I make a few minor changes to this code. When I do that I’ll
use the MyHelloWorld project so that I can leave the original HelloWorld project
untouched, and so that I can justify the time I invested in making the MyHel-
loWorld project!

HelloWorld View Class

A view is a rectangular area in which drawing takes place. Drawing is an impor-
tant part of almost all Be programs, so views are important too. Views are dis-
cussed at length in Chapter 4, Windows, Views, and Messages, so I’ll spare you the
details here. I will, however, provide a summary of views so that you aren’t in the
dark until you reach the fourth chapter.

A view can encompass the entire content area of a window—but it doesn’t have
to. That is, a window’s content area can consist of a single view or it can be
divided into two or more views. Note that a view has no visible frame, so when I
say that a window can be divided, I’m referring to a conceptual division—the user
won’t be aware of the areas occupied by views in a window.

A view serves as an independent graphics environment, or state. A view has its
own coordinate grid so that the location at which something is drawn in the view
can be kept independent of other views that may be present in a window. A view
has a large set of drawing characteristics associated with it, and keeps track of the
current state of these characteristics. The font used to draw text in the view and
the width of lines that are to be drawn in the view are two examples of these
characteristics.

The information about a single view is stored in a view object, which is of the
BView class (or a class derived from the BView class). The BView class is a part of
the Interface Kit.

When a window is created, it doesn’t initially have any views attached to (associ-
ated with) it. Because drawing always takes place in a view and never directly in a
window, any program that draws must define a class derived from the BView

HelloWorld Source Code 67

class. When the program creates a new window object, it will also create a new
BView-derived object and attach this view object to the Window object.

A class derived from the BView class will typically define a minimum of three vir-
tual member functions. That is, such a class will override at least three of the many
BView member functions. These functions are the constructor function, the
AttachedToWindow() function, and the Draw() function. The HelloView class
defined in the HelloWorld project does just that:

class HelloView : public BView {

public:
 HelloView(BRect frame, char *name);
virtual void AttachedToWindow();
virtual void Draw(BRect updateRect);
};

These member functions, along with several other BView member functions, are
discussed at length in Chapter 4. Here I’ll provide only a brief overview of each.

The purpose of the constructor is to establish the size of the view and, optionally,
provide a name for the view (NULL can be passed as the second parameter). If a
window is to have only a single view, then the first parameter to the constructor is
a rectangle of the same size as the content area of the window the view is to be
attached to.

The HelloView constructor does nothing more than invoke the BView class con-
structor. When a HelloView view object is created by the HelloWorld program,
the program passes to the HelloView constructor the size and name the view is to
have. The HelloView constructor will in turn pass that information on to the
BView constructor (as the rect and name parameters). The third BView construc-
tor parameter describes how the view is to be resized as its window is resized.
The Be constant B_FOLLOW_ALL sets the view to be resized in tandem with any
resizing of the window. The final BView constructor parameter determines the
types of notifications the view is to receive from the system. The Be constant
B_WILL_DRAW means that the view should be notified when the visible portions of
the view change (and an update is thus necessary).

HelloView::HelloView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

You might not be able to fully initialize a view object when creating it—some
characteristics of the view may be dependent on the window the view becomes
attached to. Thus the existence of the BView member function
AttachedToView(). This function is automatically called by the operating system
when the view is attached to a window (covered ahead in the discussion of the

68 Chapter 2: BeIDE Projects

HelloWorld’s application class). The characteristics of the view should be included
in the implementation of AttachedToWindow().

The HelloView version of AttachedToWindow() sets the font and font size that
are to be used for any text drawing that takes place within the view:

void HelloView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);
}

The SetFont() and SetFontSize() functions are member functions of the
BView class. The function names make the purpose of each obvious, so I won’t
offer any more information here. You will, however, find plenty of information on
drawing strings in Chapter 5, Drawing.

In Chapter 1 you saw member functions invoked via an object—as in the
SimpleWindow object invoking the BWindow member function Show():

aWindow->Show();

In the AttachedToWindow() member function you see that the BView member
functions SetFont() and SetFontSize() are invoked without the use of an
object.

As a C++ programmer, it should be obvious how a member func-
tion can be invoked in this way. If it isn’t, read on. The implementa-
tion of a member function results in a routine that can be invoked
by any object of the type of class to which the function belongs.
Therefore, the code that makes up a member function can operate
on any number of objects. When a member function includes code
that invokes a different member function (as the HelloView mem-
ber function AttachedToWindow() invokes the BView member
function SetFont()), it is implicit that the invocation is acting on
the current object. So no object prefaces the invocation.

The BView class includes a Draw() member function that automatically gets called
when the window a view is attached to needs updating. The system keeps track of
the views that are attached to a window, and if more than one view object is
attached to a window, the Draw() function for each view object is invoked. The
Draw() function should implement the code that does the actual drawing in the
view.

The HelloView version of Draw() simply establishes the starting position for draw-
ing a string of text and then draws that string.

HelloWorld Source Code 69

void HelloView::Draw(BRect updateRect)
{
 MovePenTo(BPoint(10, 30));
 DrawString("Hello, World!");
}

HelloWorld Window Class

In Chapter 1, you received an overview of the BWindow class and classes derived
from it, so I won’t go on at length about those topics here. In fact, I’ll barely dis-
cuss the HelloWindow class at all. If you need a refresher on defining a class
derived from BWindow, refer back to the SimpleApp example in Chapter 1—there
you’ll find that the SimpleWindow class consists of the same two member func-
tions (a constructor and the QuitRequested() function) as the HelloWindow
class.

class HelloWindow : public BWindow {

public:
 HelloWindow(BRect frame);
virtual bool QuitRequested();
};

In the SimpleApp project, the only thing the SimpleWindow class constructor does
is invoke the BWindow class constructor. That’s true for the HelloWindow class
constructor as well. The first parameter to the BWindow constructor, which comes
from the HelloWindow constructor, sets the size of the window. The second
parameter is a string that is used as the window’s title. The SimpleWindow class
passes the string “A Simple Window,” while the HelloWindow class passes the
more appropriate string “Hello.” The third parameter is a Be-defined constant that
specifies the type of window to be displayed. The final parameter defines the
behavior of the window. The SimpleWindow class passes the constant B_NOT_
RESIZABLE, while the HelloWindow class passes the result of combining two con-
stants, B_NOT_RESIZABLE and B_NOT_ZOOMABLE.

HelloWindow::HelloWindow(BRect frame)
 : BWindow(frame, "Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE |
 B_NOT_ZOOMABLE)
{
}

You’ve already seen the code that makes up the QuitRequested() function. In
the Chapter 1 SimpleApp project, I left this routine from the HelloWorld project
unchanged. Recall from that chapter that the purpose of overriding this BWindow
member function is to cause a mouse click on a window’s close button to not only
close the window, but to quit the application as well:

bool HelloWindow::QuitRequested()
{

70 Chapter 2: BeIDE Projects

 be_app->PostMessage(B_QUIT_REQUESTED);
 return(true);
}

HelloWorld Application Class

All programs must define a class derived from the BApplication class. Like the
SimpleApp’s SimpleApplication class, the HelloWorld’s HelloApplication
class consists of just a constructor:

class HelloApplication : public BApplication {

public:
 HelloApplication();
};

For the implementation of the SimpleApplication constructor, I started with the
HelloApplication constructor, then stripped out the view-related code. As you
look at the HelloApplication constructor you should recognize much of the
code:

HelloWindow *aWindow;
...
BRect aRect;

aRect.Set(20, 30, 180, 70);
aWindow = new HelloWindow(aRect);
...
...
aWindow->Show();

This snippet begins by declaring a window variable and a rectangle variable. Next,
the boundaries of the rectangle that sets the window’s size are established. Then a
new window object (an object of the HelloWindow class) is created. Finally, the
BWindow member function Show() is invoked to display the new window. The
code I omitted from the above snippet is the HelloApplication constructor’s
view-related code:

HelloView *aView;

aRect.OffsetTo(B_ORIGIN);
aView = new HelloView(aRect, "HelloView");

aWindow->AddChild(aView);

In the above snippet, the size of the rectangle object isn’t changed, but its existing
boundaries (as set by the prior call to the BRect member function Set()) are off-
set. The one parameter in the BRect member function OffsetTo() is the loca-
tion to move the upper-left corner of the rectangle to. The constant B_ORIGIN tells
OffsetTo() to shift the rectangle aRect from its present location such that its

HelloWorld Source Code 71

upper-left corner aligns with the origin—the point (0, 0). This has the effect of
changing the aRect coordinates from (20, 30, 180, 70) to (0, 0, 160, 40). The
details of the coordinate system, by the way, are presented in Chapter 4. Next, a
new HelloView object is created. The HelloView constructor sets the size of the
view to aRect and the name of the view to “HelloView.” Finally, the window
object aWindow invokes the BWindow member function AddChild() to attach the
view to itself. Recall that in order for a view to be of use, it must be attached to a
window; in order for drawing to take place in a window, it must have a view
attached to it.

You’ve seen the implementation of the HelloApplication constructor in bits and
pieces. Here it is in its entirety:

HelloApplication::HelloApplication()
 : BApplication("application/x-vnd.Be-HLWD")
{
 HelloWindow *aWindow;
 HelloView *aView;
 BRect aRect;

 aRect.Set(20, 30, 180, 70);
 aWindow = new HelloWindow(aRect);

 aRect.OffsetTo(B_ORIGIN);
 aView = new HelloView(aRect, "HelloView");

 aWindow->AddChild(aView);

 aWindow->Show();
}

You may have noticed that after the window object is created, no drawing appears
to take place. Yet you know that the string “Hello, World!” gets drawn in the win-
dow. Recall that the updating of a window has the effect of calling the Draw()
member function of any views attached to that window. When aWindow invokes
the BWindow Show() member function, the window is displayed. That forces an
update to occur. That update, in turn, causes the aView object’s Draw() method
to be invoked. Look back at the implementation of the HelloView class Draw()
member function to see that it is indeed this routine that draws the string.

HelloWorld main() Function

When I wrote the main() routine for SimpleApp, the only changes I made to the
HelloWorld version of main() involved changing HelloApplication references
to SimpleApplication references. For the details of what main() does, refer
back to Chapter 1. I’ll summarize by saying that main() performs the mandatory

72 Chapter 2: BeIDE Projects

creation of a new application object, then starts the program running by invoking
the BApplication member function Run():

int main()
{
 HelloApplication myApplication;

 myApplication.Run();

 return(0);
}

Altering the Source Code

To implement the functionality required of your own program, you’ll no doubt
make some changes and substantial additions to the code of whatever project you
start with. After reading a few more chapters, you’ll know the details of how to
draw just about anything to a window and how to add controls (such as buttons)
to a window. At that point you’ll be ready to make large-scale revisions of exist-
ing code. While at this early point in the book you may not feel ready to make
sweeping changes to Be code, you should be ready to make at least minor revi-
sions. In this section, I’ll do that to the HelloWorld project.

I’ll leave the HelloWorld project intact and instead make the changes to a dupli-
cate project—a project I’ve name MyHelloWorld. If you haven’t followed the steps
in this chapter’s “Setting Up a New BeIDE Project” section, do so now. Besides
getting experience at starting a new project, you’ll bring yourself to the point
where you can follow along with the code changes I’m about to make. Here they
are:

• Change the text that is drawn in the window

• Change the window’s title

• Add a zoom button to the window’s tab

• Change the size of the window

At the top of Figure 2-14, you see the original window from the HelloWorld pro-
gram, while at the bottom of the figure you see the new window from the MyHel-
loWorld program.

The drawing that takes place in the MyHelloWorld window is done by the
MyHelloView Draw() member function. A call to the BView member function
DrawString() writes the string “Hello, World!” to the window. Changing this one
DrawString() parameter to “Hello, My World!” will cause this new string to be
drawn to the window instead. The affected line is in the MyHelloView.cpp file, and
is shown here in bold type:

HelloWorld Source Code 73

void MyHelloView::Draw(BRect updateRect)
{
 MovePenTo(BPoint(10, 30));
 DrawString("Hello, My World!");
}

The change to the window’s title and the addition of a zoom button to the win-
dow are both taken care of in the MyHelloWindow class constructor, so I’ll open
the MyHelloWindow.cpp file. MyHelloWindow() invokes the BWindow construc-
tor. The second parameter in the BWindow constructor defines the window’s title,
so changing that parameter from “Hello” to “My Hello” handles the window title
change. The last parameter in BWindow() is a Be-defined constant, or combina-
tion of Be-defined constants, that defines the behavior of the window. In the origi-
nal HelloWindow class, this parameter was a combination of the constants that
specified that the window be drawn without a resize knob and without a zoom
button (B_NOT_RESIZABLE | B_NOT_ZOOMABLE). I’ll change this parameter to the
one constant B_NOT_RESIZABLE so that a window created from the
MyHelloWindow class will be without a resize knob, but will now have a zoom
button:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
}

The final change I’ll make to the code that came from the HelloWorld project will
change the size of the program’s window. The MyHelloApplication constructor
uses a BRect object to define the size of the window, so I’ll go to this function in
the MyHelloWorld.cpp file to make the change. In the following version of
MyHelloApplication(), I’ve changed the coordinates of the rectangle object
aRect from (20, 30, 180, 70) to (20, 30, 230, 100) in order to set up a window
that’s a little larger than the one used in the original HelloWorld program.

Figure 2-14. The window from HelloWindow (top) and MyHelloWindow (bottom)

74 Chapter 2: BeIDE Projects

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-myworld")
{
 MyHelloWindow *aWindow;
 MyHelloView *aView;
 BRect aRect;

 aRect.Set(20, 20, 240, 90);
 aWindow = new MyHelloWindow(aRect);

 aRect.OffsetTo(B_ORIGIN);
 aView = new MyHelloView(aRect, "MyHelloView");

 aWindow->AddChild(aView);

 aWindow->Show();
}

I can compile all the MyHelloWorld project files, build a new version of the
MyHelloWorld program, and run that program by choosing Run from the Project
menu in the menubar of the MyHelloWorld project window. If I’ve done every-
thing correctly, the program will display a window that looks like the one at the
bottom of Figure 2-14.

75

Chapter 3

In this chapter:
• Overview of the BeOS

Software Kits
• Software Kit Class

Descriptions
• Chapter Example:

Adding an Alert to
MyHelloWorld

3
3.BeOS API Overview

Writing a Be application generally involves starting with an existing base of code
and then using several of the Be software kit classes to add new functionality to
the base code. In Chapter 2, BeIDE Projects, you saw how to ready an existing
project to serve as the base for your new project. In this chapter, you’ll see how to
select and use a software kit class to modify your new project.

This chapter begins with an overview of the Be software kits. Knowing the pur-
pose of each kit will help you quickly hone in on which kits will be of the most
use in your project. After finding a kit of interest, you need to locate a useful class
within that kit. To do that, you’ll use the Be Book—the electronic document by
Be, Inc. that serves as the BeOS class reference. Once you’ve found a class of pos-
sible interest, you’ll read through the Be Book’s class description to find out all
about the class: an overview of how objects are created, what they’re useful for,
and so forth. In this chapter, you’ll see how to get the most out of the class
descriptions in the Be Book.

The Be Book is essential documentation for any Be programmer—but it isn’t a
tutorial. In this chapter, I close by looking at how the Be Book describes one class
(the BAlert class), and then go on to integrate an object of this class type in a
simple program. The remaining chapters in this book provide example snippets
and programs that “bring to life” the class descriptions found in the Be Book.

Overview of the BeOS Software Kits
Chapter 1, BeOS Programming Overview, provided a very brief description of each
kit—only a sentence or two. Because you hadn’t been exposed to any of the
details of BeOS programming at that point, out of necessity those descriptions
didn’t give examples of kit classes and member functions. Now that you’ve

76 Chapter 3: BeOS API Overview

studied the fundamentals of Be programming and have looked at some example
source code, it’s time to rewrite the kit summaries, with an emphasis on the key
classes and a few important member functions.

The focus of this book is on the first three kits described below: the Application
Kit, the Interface Kit, and the Storage Kit. Don’t feel as if you’re being short-
changed, though—these kits provide dozens of classes that allow you to create
full-featured applications complete with windows, graphics, editable text, and all
manner of controls.

While each of the software kits isn’t represented by its own chapter in this book,
all are at least briefly described below for the sake of completeness. A couple of
the these kits can’t be covered, as they aren’t complete as of this writing. Be pro-
vides information on kit updates at the developer web page at http://www.be.com/
developers, so you’ll want to check that site occasionally. Other kits are complete,
but their specialized functionality makes detailed descriptions out of scope for this
book. Note that while some kits don’t have a chapter devoted to them, some of
their classes appear throughout the book. See the description of the Support Kit
below for a specific example concerning the BLocker class.

Application Kit

The classes of the Application Kit communicate with the Application Server and
directly with the kernel. Every program must create a single instance of a class
derived from the Application Kit class BApplication—the HelloWorld program
provides an example of how this is typically done. This BApplication object is
necessary for a couple of reasons. The application object:

• Makes a connection to the Application Server. This connection is vital if the
program is to display and maintain windows, which of course most Be pro-
grams do.

• Runs the program’s main message loop. This loop provides a messaging sys-
tem that keeps the program aware of events (such as a press of a keyboard
key by the user).

An important member function of the BApplication class is Run(). The main()
function of every Be program must create an instance of the BApplication class
and then invoke Run() to start the program.

The BApplication class is derived from two other Application Kit classes—
BLooper and BHandler. A BLooper object creates and then controls a message
loop, a thread that exits to transfer messages to objects. A BHandler object is one
that is capable of receiving a message from a BLooper object—it handles a mes-
sage received from a message loop. Because a BApplication object is also a

Overview of the BeOS Software Kits 77

BLooper and BHandler object, it acts as both a message loop and a message han-
dler. Refer to Figure 1-2 in Chapter 1 for a look at the Application Kit class hierar-
chy that illustrates the relationship between the BApplication and BLooper and
BHandler classes.

Interface Kit

With over two dozen classes, the Interface Kit is the largest of the Be software kits.
It’s also the one you’ll make the most use of—as will this book. The chapters from
Chapter 4, Windows, Views, and Messages, through Chapter 8, Text, deal almost
exclusively with this kit. In Chapter 1 you saw that a window is an object derived
from an Interface Kit class—the BWindow class. In Chapter 2 you were introduced
to the concept that all drawing in a window is done via an object derived from
another Interface Kit class—the BView class (much more on this important topic
appears in Chapter 4 and Chapter 5, Drawing). In subsequent chapters you’ll learn
that controls (such as buttons and checkboxes), strings, and menus are also types
of views (objects of classes that are derived from the BView class). Because all
drawing takes place in a view, and because all of the aforementioned items are
drawn, this should seem reasonable. It should also shed more light on the class
hierarchy of the Interface Kit, as shown in Figure 1-4 back in Chapter 1.

Like a BApplication object (see the Application Kit above), a BWindow object is
derived from both the BLooper and BHandler classes, so it is both an organizer
of messages in a message loop and a handler of messages. When an event is
directed at a window (such as a mouse button click while the cursor is over a win-
dow’s close button), the system transfers a message to the window object’s thread.
Because the window is a message handler as well as a message loop, it may also
be able to handle the message.

A window contains one or more views—objects of the BView class or one of its
many derived classes. Often a window has one view that is the same size as the
content area of the window (or larger than the content area of the window if it
includes scrollbars). This view then serves as a holder of other views. These
smaller, nested, views can consist of areas of the window that are to act indepen-
dently of one another. Any one of these smaller views may also be used to dis-
play a single interface item, such as a button or a scrollbar. Because the contents
of a view are automatically redrawn when a window is updated, it makes sense
that each interface item exists in its own view. Some of the Interface Kit control
classes that are derived from the BView class (and which you’ll work with in
Chapter 6, Controls and Messages) include BCheckBox, BRadioButton, and
BPictureButton.

78 Chapter 3: BeOS API Overview

Storage Kit

All operating systems provide file system capabilities—without them, data couldn’t
be saved to disk. The Storage Kit defines classes that allow your program to store
data to files, search through stored data, or both.

The BNode class is used to create an object that represents data on a disk. The
BFile class is a subclass of BNode. A BFile object represents a file on disk. Creat-
ing a BFile object opens a file, while deleting the same object closes the file. A
BFile object is the mechanism for reading and writing a file. The BDirectory
class is another subclass of BNode. A BDirectory object represents a folder, and
allows a program to walk through the folder’s contents and create new files in the
folder.

The concept of file attributes, associating extra information with a given file,
allows for powerful file indexing and searching. The BQuery class is used to per-
form searches.

Support Kit

The Support Kit, as its name suggests, supports the other kits. This kit defines
some datatypes, constants, and a few classes. While the nature of the classes of the
Support Kit makes a chapter devoted to it impractical, you will nonetheless
encounter a couple of this kit’s classes throughout this book.

The BArchivable class defines a basic interface for storing an object in a mes-
sage and instantiating a copy of that object from the message.

The BLocker class is used to limit program access to certain sections of code.
Because the BeOS is multithreaded, there is the possibility that a program will
attempt to access data from two different threads simultaneously. If both threads
attempt to write to the same location, results will be unpredictable. To avoid this,
programs use the Lock() and Unlock() member functions to protect code. Calls
to these functions are necessary only under certain circumstances. Throughout this
book mention of the use of Lock() and Unlock() will appear where required.

Media Kit

The Media Kit is designed to enable programs to work with audio and video data
in real time—the kit classes provide a means for processing audio and video data.
The Media Kit relies on nodes—specialized objects that perform media-related
tasks. A node is always indirectly derived from the BMediaNode class, and there
are several basic node types. Examples are producer and consumer nodes. A pro-
ducer node sends output to media buffers, which are then received by consumer
nodes.

Overview of the BeOS Software Kits 79

Midi Kit

MIDI (Musical Instrument Digital Interface) is a communication standard for repre-
senting musical data that is generated by digital musical devices. MIDI was cre-
ated to define a way for computer software and electronic music equipment to
exchange information. The Midi Kit is a set of classes (such as BMidiPort) used
to assemble and disassemble MIDI messages. A MIDI message describes a musical
event, such as the playing of a note. To make use of the Midi Kit classes, you’ll
need to have prior knowledge of the MIDI software format.

Device Kit

The Device Kit classes (such as BJoystick and BSerialPort) are used for the
control of input and output devices and for the development of device drivers.
These classes serve as interfaces to the ports on the back of a computer running
the BeOS.

Network Kit

The Network Kit consists of a number of C functions. The C functions are global
(they can be used throughout your program), and exist to allow your program to
communicate with other computers using either the TCP or UDP protocols. One
such function is gethostbyname(), which is used to retrieve information about
computers attached to the user’s network.

OpenGL Kit

OpenGL is a cross-platform application programming interface developed to facili-
tate the inclusion of interactive 2D and 3D graphics in computer programs. Intro-
duced in 1992, OpenGL has become the industry standard for high-performance
graphics. The OpenGL Kit contains classes that simplify the implementation of ani-
mation and three-dimensional modeling in your programs. The OpenGL Kit is one
of the newer BeOS kits, and is incomplete as of this writing. Working with the
OpenGL classes requires some previous experience with OpenGL.

Game Kit

Like the OpenGL Kit, the Game Kit is incomplete. While it will eventually contain
a number of classes that will aid in the development of games, at this time it
includes just two classes. The BWindowScreen class is used by an application to
gain direct access to the screen in order to speed up the display of graphics. The
BDirectWindow class is an advanced class commonly used by game and media
developers.

80 Chapter 3: BeOS API Overview

Kernel Kit

The primary purpose of the C functions that make up the Kernel Kit is to support
the use of threads. While the BeOS automatically spawns and controls many
threads (such as the one resulting from the creation of a new window), your pro-
gram can manually spawn and control its own threads. This kit includes classes
that support semaphores for protecting information in the BeOS multithreaded
environment and shared memory areas for communicating between multiple
threads and multiple applications.

Translation Kit

The Translation Kit provides services that ease the work in translating data from
one format to another. For instance, this kit could be used to translate the data in
an imported JPEG file into a BBitmap object (the BBitmap being a class defined in
the Interface Kit) that your program could then manipulate.

Software Kit Class Descriptions
The classes (and in a few cases, the C functions and structures) that make up the
BeOS software kits serve any imaginable programming need, yet they share many
similarities. Becoming familiar with what makes up a software kit class definition
and how Be documents such a class will help you make use of all of the software
kits.

Contents of a Class

A Be software kit consists of classes. Each class can consist of member functions,
data members, and overloaded operators. While a kit class will always have mem-
ber functions, it isn’t required to (and very often doesn’t) have any data members
or operators.

Data members

C++ programmers are used to creating classes that define a number of data mem-
bers and a number of member functions. In the first few chapters of this book,
though, you’ve read little about data members in Be classes. If a Be class does
define data members, they are usually defined to be private rather than public.
These private data members will be used within class member functions, but
won’t be used directly by your program’s objects. That is, a data member gener-
ally exists for use in the implementation of the class rather than for direct use by
your program—data members are thus of importance to a class, but they’re almost
never of importance to you.

Software Kit Class Descriptions 81

You can see an example of the data members of a Be class by perusing the Be
header files. In Chapter 1 you saw a snippet that consisted of a part of the
BWindow class. In the following snippet I’ve again shown part of this class. Here,
however, I’ve included the private keyword and some of the approximately
three dozen data members that are a part of this class.

class BWindow : public BLooper {

public:
 BWindow(BRect frame,
 const char *title,
 window_type type,
 uint32 flags,
 uint32 workspace = B_CURRENT_WORKSPACE);
virtual ~BWindow();

...
 void ResizeBy(float dx, float dy);
 void ResizeTo(float width, float height);
virtual void Show();
virtual void Hide();
 bool IsHidden() const;
...
private:
...
char *fTitle;
uint32 server_token;
char fInUpdate;
char f_active;
short fShowLevel;
uint32 fFlags;
port_id send_port;
port_id receive_port;
BView *top_view;
BView *fFocus;
...
}

Member functions

A class constructor and destructor are member functions, as are any class hook
functions. While the constructor, destructor, and hook functions are often
described and discussed separately from other member functions, all fall into the
general category of member functions, as shown in Figure 3-1.

From programming in C++ on other platforms, you’re familiar with constructors
and destructors. But you may not know about hook functions. A hook function is
a member function that can be called directly by a program, but can also be (and
very often is) invoked automatically by the system.

82 Chapter 3: BeOS API Overview

Many software kit class member functions are declared using the C++ keyword
virtual. The most common reason for declaring a member function virtual is so
that a derived class can override the function. Additionally, hook functions are
declared to be virtual for a second reason as well: your program may want to add
functionality to that which is already provided by the hook function.

When an application-defined class defines a member function, that function is typ-
ically invoked by an object created by the application. A hook function is also a
routine defined by an application-defined class, but it is one that is invoked auto-
matically by the software kit, not by an object. In order to be called by the sys-
tem, a hook function must have a specific name that the system is aware of.

You saw an example of a hook function in the SimpleApp example back in
Chapter 1—the QuitRequested() function. When a window’s close button is
clicked on, the Be system automatically invokes a routine named
QuitRequested(). If the application has defined such a function in the BWindow-
derived class that the window object belongs to, it will be that member function
that gets invoked. As a reminder, here’s the QuitRequested() function as defined
in the SimpleWindow class of the SimpleApp example:

bool SimpleWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);
 return(true);
}

Figure 3-1. A kit class may consist of data members, member functions, and operators

Software Kit Class

Data members

Member functions

Hook functions

Constructor and destructor

Other member functions

Overloaded operators

Software Kit Class Descriptions 83

A hook function is so named because the function serves as a place where you
can “hook” your own code onto that of the Be-written software kit code. By
implementing a hook function, your application in essence extends the functional-
ity of the Be operating system. The system is responsible for calling a hook func-
tion, while your application is responsible for defining the functionality of that
function.

Overloaded operators

Along with member functions and data members, you may find overloaded opera-
tors in a Be class. A few classes overload some of the C++ operators, but most
classes don’t overload any. You’ll find that the need for a class to overload opera-
tors is usually intuitive. For instance, the BRect class overloads the comparison
operator (==) so that it can be used to test for the equality of two rectangle
objects. Because the comparison operator is defined in C++ such that it can be
used to compare one number to another, the BRect class needs to rewrite its defi-
nition so that it can be used to test all four coordinates of one rectangle to the four
coordinates of another rectangle.

As you just saw for the BRect class, if it makes sense for a class to redefine a C++
operator, it will. For most other classes, the use of operators with objects doesn’t
make sense, so there’s no need to overload any. For instance, the BWindow and
BView classes with which you’re becoming familiar don’t included any over-
loaded operators. After all, it wouldn’t be easy to test if one window is “equal” to
another window.

Class Descriptions and the Be Book

The definitive source of information for the many classes that make up the BeOS
software kits is the Be class reference by the programmers of the BeOS. The elec-
tronic versions of this document (you’ll find it in both HTML and Acrobat formats)
go by the name of the Be Book, while the printed version is titled The Be Devel-
oper’s Guide (available from O’Reilly). After programming the BeOS for awhile,
you’ll find the Be Book or its printed version indispensable. But now, as you take
your first steps in programming the BeOS, you may find the voluminous size and
the reference style of this book intimidating. While this one thousand or so page
document is comprehensive and well-written, it is a class reference, not a BeOS
programming tutorial. When you have a solid understanding of how classes are
described in the Be Book you’ll be able to use the Be Book in conjunction with
this text if you wish.

The Be Book is organized into chapters. With the exception of the first chapter,
which is a short introduction to the BeOS, each chapter describes the classes of
one kit. Chapter 2 covers the classes of the Application Kit, Chapter 3 describes

84 Chapter 3: BeOS API Overview

the classes that make up the Storage Kit, and so forth. Each class description in a
chapter is itself divided into up to six sections: Overview, Data Members, Hook
Functions, Constructor and Destructor, Member Functions, and Operators. If any
one of these six sections doesn’t apply to the class being described, it is omitted
from the class description. For instance, the BWindow class doesn’t overload any
operators, so its class description doesn’t include an Operators section.

The following list provides explanations of what appears in each of the six sec-
tions that may be present in a class description in the Be Book. For each software
kit class, the sections will appear in the order listed below, though some of the
sections may be omitted:

Overview
A class description begins with an overview of the class. Such information as
the purpose of the class, how objects of the class type are used, and related
classes may be present in this section. The overview will generally be short,
but for significant classes (such as BWindow and BView), it may be several
pages in length.

Data Members
This section lists and describes any public and protected data members
declared by the class. If a class declares only private data members (which is
usually the case), this section is omitted.

Hook Functions
If any of the member functions of a class serve as hook functions, they will be
listed and briefly described in this section. This section serves to summarize
the purpose of the class hook functions—a more thorough description of each
hook function appears in the Member Functions section of the class descrip-
tion. Many classes don’t define any hook functions, so this section will be
omitted from a number of class descriptions.

Constructor and Destructor
A class constructor and destructor are described in this section. A few classes
don’t define a destructor (objects of such class types know how to clean up
and delete themselves). In such cases, this section will be named Constructor
rather than Constructor and Destructor.

Member Functions
This section provides a detailed description of each of the member functions
of a class, except the class constructor and destructor (which have their own
section). While class hook functions have their own section, that section
serves mostly as a list of hook functions—the full descriptions of such func-
tions appear here in Member Functions. Every class consists of at least one
member function, so this section is always present in a class description.

Software Kit Class Descriptions 85

Operators
Here you’ll find a description of any C++ operators a class overloads. Most
classed don’t overload any operators, so this section is frequently absent from
a class description.

A BeOS Class Description: The BRect Class

Now that you’ve had a general look at how a class description appears in the Be
Book, you’ll want to see a specific example. Here I’ll look at the Be Book descrip-
tion of the BRect class. Because this class doesn’t have any hook functions, the
Hook Functions section is omitted from the Be Book’s class description. If you’d
like to see a specific example of how a class implements hook functions, refer to
the “A BeOS Class Description: The BWindow Class” section in this chapter.

As you read these pages, you may want to follow along in the electronic version
of the Be Book. If you do, double-click on the Chapter 4 document and scroll to
the start of the BRect class description.

Overview

The Overview section of the BRect class description informs you what a BRect
object is (a rectangle) and how a BRect object is represented (by defining four
coordinates that specify where the corners of the rectangle are located).

Next in this section is the object’s general purpose (to serve as the simplest specifi-
cation of a two-dimensional area) and a few specific examples of what such an
object is used for (to specify the boundaries of windows, scrollbars, buttons, and
so on). The BRect overview then provides the details of how your specification of
a rectangle object’s boundaries affects the rectangle’s placement in a view.

As you read the overview, notice that no BRect data members or BRect member
functions are mentioned by name. This is typical of a class Overview section; what
a class object is used for is covered, but details of how to implement this usage
aren’t. Such details are found in the descriptions of the appropriate functions in
the Member Functions section.

Data Members

The BRect class is one of the few software kit classes that declares public data
members. So it is one of the few classes that includes a Data Members section.
Here you’ll find the names and datatypes of the four public data members (they’re
named left, top, right, and bottom, and each is of type float). A single-
sentence description accompanies the listing of each data member. The specifics
of how these data members are used by a BRect object appear in discussions of

86 Chapter 3: BeOS API Overview

the BRect constructor and member functions in the Constructor and Member
Functions sections.

Hook Functions

The BRect class defines several member functions, but none of them serves as a
hook function, so no Hook Functions section appears in the BRect class descrip-
tion.

Constructor and Destructor

For the BRect class, this section is named Constructor rather than Constructor and
Destructor. There is no BRect destructor, which implies that a BRect object
knows how to delete itself. The BRect class is somewhat atypical of kit classes in
that it is more like a primitive datatype (such as an int or float) than a class.
The primitive datatypes serve as the foundation of C++, and in the BeOS the
BRect class serves a somewhat similar purpose; is the basic datatype that serves as
the foundation of Be graphics. BRect objects are declared in the same way primi-
tive datatype variables are declared—there’s no need to use the new operator.
There’s also no need to use the delete operator to destroy such objects.

The Constructor section reveals that there are four BRect constructors. One com-
mon method of creating a rectangle is to use the constructor that accepts the four
rectangle coordinates as its parameters. The remainder of the Constructor section
of the BRect class description provides example code that demonstrates how each
of the four BRect constructors can be used.

Each of the four BRect constructor functions is declared using the
inline keyword. As a C++ programmer, you may have encoun-
tered inline functions. If you haven’t, here’s a brief summary of this
type of routine. Normally, when a function is invoked, a number of
non-routine instructions are executed. These instructions ensure that
control is properly moved from the calling function to the called
function and then back to the calling function. The execution time
for these extra instructions is slight, so their inclusion is seldom a
concern. If it does become an issue, though, C++ provides a mecha-
nism for eliminating them—the inline keyword. The upside to the
use of the inline keyword is that execution time decreases slightly.
The downside is that this reduced time is achieved by adding more
code to the executable. Declaring a function inline tells the com-
piler to copy the body of the function to the location at which the
function is called. If the function is called several times in a pro-
gram, then its code appears several times in the executable.

Software Kit Class Descriptions 87

Member Functions

This section lists each of the BRect member functions in alphabetical order. Along
with the name and parameter list of any given function is a detailed description of
the routine’s purpose and use. You’ve already seen one BRect member function
in action—the Set() function. In the Chapter 1 example, SimpleApp, a BRect
object is created and assigned the values that define the rectangle used for the
boundaries of the SimpleApp program’s one window. The Member Functions sec-
tion’s description of Set() states that the four parameters are used to assign val-
ues to the four BRect data members: left, top, right, and bottom.

Operators

The BRect class overrides several C++ operators in order to redefine them so that
they work with operations involving rectangles. In the Operators section, you see
each such operator listed, along with a description of how the overloaded opera-
tor is used. The operator you’ll use most often is probably the assignment opera-
tor (=). By C++ definition, this operator assigns a single number to a variable. Here
the BRect class redefines the operator such that it assigns all four coordinates of
one rectangle to the four coordinates of another rectangle. The Rect.h header file
provides the implementation of the routine that redefines the assignment operator:

inline BRect &BRect::operator=(const BRect& from)
{
 left = from.left;
 top = from.top;
 right = from.right;
 bottom = from.bottom;
 return *this;
}

A BeOS Class Description: The BWindow Class

After reading the “A BeOS Class Description: The BRect Class” section of this chap-
ter, you should have a good feel for how classes are described in the Be Book.
The BRect class doesn’t include hook functions, though, so if you want to get a
little more information on this type of member function, read this section. The
BWindow class doesn’t define any public data members or overload any operators,
so you won’t find talk of a Data Members section or an Operators section here.
The BRect class, however, does define public member functions and overload
operators. If you skipped the previous part, you may want to read it as well.

Following along in the Be Book isn’t a requirement, but it will be helpful. If you
have access to the electronic version of the Be Book, double-click on the
Chapter 4 document and scroll to the start of the BWindow class description.

88 Chapter 3: BeOS API Overview

Overview

The Overview section of the BWindow class description starts by telling you the
overall purpose of the BWindow class (to provide an application interface to win-
dows) and the more specific purpose of this class (to enable one object to corre-
spond to one window).

A class overview may mention other classes, kits, or servers that play a role in the
workings of the described class. For instance, the BWindow overview mentions that
the Application Server is responsible for allocating window memory and the
BView class makes drawing in a window possible.

Before working with a class for the first time, you’ll want to read the Overview sec-
tion to get, of course, an overview of what the class is all about. But you’ll also
want to read the Overview section to pick up bits of information that may be of
vital interest to your use of the class. The BWindow overview, for instance, notes
that there is a strong relationship between the BApplication class and the
BWindow class, and that a BApplication object must be created before the
first BWindow object is created. The overview also mentions that a newly created
BWindow object is hidden and must be shown using the Show() member func-
tion. You already knew these two facts from Chapter 1 of this book, but that chap-
ter didn’t supply you with such useful information about each of the dozens of Be
software kit classes!

Data Members

Like most classes, the BWindow class doesn’t define any public data members, so
no Data Members section appears in the BWindow class description.

Hook Functions

The BWindow class has close to a dozen member functions that serve as hook
functions—routines that are invoked by the system rather than invoked by win-
dow objects. Here you find the names of the BWindow hook functions, along with
a single-sentence description of each. A detailed description of each function,
along with parameter types, appears in the Member Functions section.

Many of the short descriptions of the hook functions tell why the function can be
implemented. For instance, the FrameMoved() hook function can be imple-
mented to take note of the fact that a window has moved. Most programs won’t
have to perform any special action if one of the windows is moved. If, however,
your application does need to respond to a moved window, it can—thanks to the
FrameMoved() hook function. If your application implements a version of this
function, the movement of a window causes the system to automatically execute
your program’s version of this routine.

Chapter Example: Adding an Alert to MyHelloWorld 89

Constructor and Destructor

Some classes have a constructor that includes a parameter whose value comes
from a Be-defined constant. In such cases the Be-defined constants will be listed
and described in the Constructor and Destructor section. For example, the third of
the BWindow constructor’s several parameters has a value that comes from one of
several Be-defined constants. This window_type parameter specifies the type of
window to be created. Your application can use either the B_MODAL_WINDOW,
B_BORDERED_WINDOW, B_TITLED_WINDOW, or B_DOCUMENT_WINDOW constant in
the creation of a BWindow object. In this Constructor and Destructor section you’ll
find a description of each of these constants.

While a class destructor may be defined, objects of a kit class type often don’t
need to explicitly call the object’s destructor when being destroyed. That’s because
the BeOS does the work. The Constructor and Destructor section lets you know
when this is the case for a class. The BWindow class provides an example. As
stated in the Constructor and Destructor section of the BWindow class description,
a BWindow object is destroyed by calling the BWindow member function Quit().
This routine is responsible for using the delete operator on the window object and
then invoking the BWindow destructor.

Member Functions

This section describes each of the more than seventy member functions of the
BWindow class. You’ve worked with a couple of these routines, including the
Show() function, in Chapter 1 and Chapter 2. If you look up Show() in the Mem-
ber Functions, you’ll see that Show() is used to display a window—as you already
know. Here you’ll also learn that this routine places the window in front of any
other windows and makes it the active window.

Operators

The BWindow class doesn’t overload any C++ operators, so the Operators section is
omitted from the BWindow class description.

Chapter Example: Adding an Alert to
MyHelloWorld
Each remaining chapter in this book will include numerous code snippets that
demonstrate the several topics presented in the chapter. The chapter will then
close with the source code and a walk-through of a short but comprehensive
example that exhibits many or all of the chapter topics. To keep new code to a
minimum and focus on only the new material presented in the chapter, each

90 Chapter 3: BeOS API Overview

example program will be a modification of the MyHelloWorld program intro-
duced in Chapter 2.

This chapter provided an overview of the entire BeOS software kit layer, which
makes including an example program relevant to the chapter a little difficult. Still,
I’d feel uncomfortable ending a chapter without at least a short exercise in adding
code to a Be application! In this section, I first rearrange some of the code in the
MyHelloWorld listing to demonstrate that in Be programming—as in programming
for any platform—there’s more than one means to accomplish the same goal. After
that, I have the new version of MyHelloWorld open both its original window and
a new alert by adding just a few lines of code to the MyHelloWorld.cpp listing.

Revising MyHelloWorld

By this point in your studies of Be programming, you should have enough of an
understanding of Be software kits, classes, and member functions that you feel
comfortable making at least minimal changes to existing Be source code. While
you’ll often start a new programming endeavor from an existing base of code,
you’ll always need to adapt that code to make it fit your program’s needs. You
should also be gaining enough of an understanding of Be code that you feel com-
fortable with the idea that there is more than one way to solve any programming
task. As you look at the source code of existing Be applications, be aware that dif-
ferent programmers will write different code to achieve the same results.

In this section I’ll rearrange some of the code in the MyHelloWindow.cpp and
MyHelloWorld.cpp source code files from the MyHelloWorld program introduced
in Chapter 2. Building a MyHelloWorld application from the modified listings will
result in a program that behaves identically to the version built in Chapter 2.

The version of MyHelloWorld presented here will be used as the
basis for each of the example programs in the remainder of this
book. While there’s nothing tricky in the code presented here, you’ll
still want to take a close look at it so that you can focus on only the
new code that gets added in subsequent example programs.

Two approaches to achieving the same task

While I could just go ahead and make a few alterations for the sake of change, I’ll
instead assume I have a valid reason for doing so! First, consider the Chapter 2
version of MyHelloWorld. The MyHelloWindow class has a constructor that defines
an empty window. The MyHelloView class has a constructor that defines an
empty view and a Draw() member function that draws the string “Hello, My

Chapter Example: Adding an Alert to MyHelloWorld 91

World!” in that view. Recall that there is no connection between a window object
created from the MyHelloWindow class and a view object created from the
MyHelloView class until after the window object is created and the view object is
attached to it in the HelloApplication class constructor:

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-myWorld")
{
 MyHelloWindow *aWindow;
 MyHelloView *aView;
 BRect aRect;

 aRect.Set(20, 20, 200, 60);
 aWindow = new MyHelloWindow(aRect);

 aRect.OffsetTo(B_ORIGIN);
 aView = new MyHelloView(aRect, "HelloView");

 aWindow->AddChild(aView);

 aWindow->Show();
}

The above approach is a good one for a program that allows for the opening of
windows that differ—two windows could use two different views. If My-
HelloWorld defined a second view class, then a second window of the
MyHelloWindow class type could be opened and an object of this different view
could be attached to it.

Now consider a program that allows multiple windows to open, but these win-
dows are initially to be identical. An example of such an application might be a
graphics program that opens windows that each have the same tool palette along
one edge. The palette could be a view object that consists of a number of icon
buttons. Here it would make sense to use an approach that differs from the above.
For such a program the view could be attached to the window in the window
class constructor. That is, the code that is used to create a view and attach it to a
window could be moved from the application constructor to the window construc-
tor. If I were to use this approach for the MyHelloWorld program, the previously
empty constructor for the MyHelloWindow class would now look like this:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 MyHelloView *aView;

 frame.OffsetTo(B_ORIGIN);
 aView = new MyHelloView(frame, "MyHelloView");

 AddChild(aView);
 Show();
}

92 Chapter 3: BeOS API Overview

For the MyHelloWorld program, the MyHelloApplication constructor would
now hold less code, and would look like the version shown here:

MyHelloApplication::MyHelloApplication()
 : BApplication('myWD')
{
 MyHelloWindow *aWindow;
 BRect aRect;

 aRect.Set(20, 20, 250, 100);
 aWindow = new MyHelloWindow(aRect);
}

Now, when a new window is created in the application constructor, the
MyHelloWindow constructor is responsible for creating a new view, adding the
view to the new window, and then displaying the new window.

The new MyHelloWorld source code

Changing the MyHelloWorld program to use this new technique results in changes
to two files: MyHelloWindow.cpp and MyHelloWorld.cpp. Here’s how MyHelloWin-
dow.cpp looks now:

// ---
#ifndef _APPLICATION_H
#include <Application.h>
#endif
#ifndef MY_HELLO_VIEW_H
#include "MyHelloView.h"
#endif
#ifndef MY_HELLO_WINDOW_H
#include "MyHelloWindow.h"
#endif

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 MyHelloView *aView;

 frame.OffsetTo(B_ORIGIN);
 aView = new MyHelloView(frame, "MyHelloView");

 AddChild(aView);
 Show();
}

bool MyHelloWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);
 return(true);
}

// ---

Chapter Example: Adding an Alert to MyHelloWorld 93

The MyHelloWorld.cpp file doesn’t get any new code—it only gets code removed.
Here’s the new version of MyHelloWorld.cpp:

// ---
#ifndef MY_HELLO_WINDOW_H
#include "MyHelloWindow.h"
#endif
// removed inclusion of MyHelloView.h header file
#ifndef MY_HELLO_WORLD_H
#include "MyHelloWorld.h"
#endif

main()
{
 MyHelloApplication *myApplication;

 myApplication = new MyHelloApplication();
 myApplication->Run();

 delete(myApplication);
 return(0);
}

MyHelloApplication::MyHelloApplication()
 : BApplication('myWD')
{
 MyHelloWindow *aWindow;
 BRect aRect;
 // moved to MyHelloWindow constructor: MyHelloView variable declaration

 aRect.Set(20, 20, 250, 100);
 aWindow = new MyHelloWindow(aRect);
 // moved to MyHelloWindow constructor: the code to create view,
 // attach it to window, and show window
}

// ---

As is the case for all of this book’s examples, you’ll find a folder that holds the
files for this new version of MyHelloWorld on the included CD-ROM. Make sure to
compile and build an application from the project file to convince yourself that
this latest version of the MyHelloWorld executable is the same as the Chapter 2
version.

Adding an Alert to HelloWorld

The Interface Kit defines classes for the common interface elements. There’s the
BWindow class for a window, the BMenuBar class for a menubar, the BMenu class
for a menu, the BMenuItem class for a menu item, and so forth. When you want to
add an interface element to a program, you rely on an Interface Kit class to create

94 Chapter 3: BeOS API Overview

an object that represents that element. Consider a program that is to include an
alert. Armed with the above knowledge, it’s a pretty safe guess that the Interface
Kit defines a BAlert class to ease the task of creating alerts.

The BAlert class description

The BAlert class is a simple one: it consists of a constructor and a handful of
member functions. The following is the BAlert class definition (less its private
data members, which you won’t use) from the Alert.h header file:

class BAlert : public BWindow
{
public:
 BAlert(const char *title,
 const char *text,
 const char *button1,
 const char *button2 = NULL,
 const char *button3 = NULL,
 button_width width = B_WIDTH_AS_USUAL,
 alert_type type = B_INFO_ALERT);

virtual ~BAlert();

 BAlert(BMessage *data);
static BArchivable *Instantiate(BMessage *data);
virtual status_t Archive(BMessage *data, bool deep = true) const;

 void SetShortcut(int32 button_index, char key);
 char Shortcut(int32 button_index) const;

 int32 Go();
 status_t Go(BInvoker *invoker);

virtual void MessageReceived(BMessage *an_event);
virtual void FrameResized(float new_width, float new_height);
 BButton *ButtonAt(int32 index) const;
 BTextView *TextView() const;

virtual BHandler *ResolveSpecifier(BMessage *msg,
 int32 index,
 BMessage *specifier,
 int32 form,
 const char *property);
virtual status_t GetSupportedSuites(BMessage *data);

static BPoint AlertPosition(float width, float height);
...
}

The Overview section of the BAlert class description in the Be Book places
you on familiar ground by letting you know that an alert is nothing more than
a window with some text and one or more buttons in it. In fact, the overview

Chapter Example: Adding an Alert to MyHelloWorld 95

states that you could forego the BAlert class altogether and use BWindow objects
in their place. You could do that, but you won’t want to. The BAlert class takes
care of creating the alert window, establishing views within it, creating and dis-
playing text and button objects in the alert, and displaying the alert upon creation.

The Overview section tells you the two steps you need to take to display an alert:
construct a BAlert object using the new operator and the BAlert constructor,
then invoke the Go() member function to display the new alert window.

The Constructor section of the BAlert class description provides the details of the
variable parameter list of the BAlert constructor. While the constructor can have
up to seven parameters, it can be invoked with fewer—only the first three parame-
ters are required. Here’s the BAlert constructor:

BAlert(const char *title,
 const char *text,
 const char *button1,
 const char *button2 = NULL,
 const char *button3 = NULL,
 button_width width = B_WIDTH_AS_USUAL,
 alert_type type = B_INFO_ALERT);

The required parameters specify the alert’s title, its text, and a title for the alert’s
mandatory button. The first parameter is a string that represents the alert’s title.
While an alert doesn’t have a tab as an ordinary window does, a title is nonethe-
less required. The second parameter is a string that represents the text that is to
appear in the alert. The third parameter is a string (such as “OK,” “Done,” or
“Accept”) that is to be used as the title of a button that appears in the alert. This
button is required so that the user has a means of dismissing the alert.

The fourth through seventh parameters have default values assigned to them so
that a call to the constructor can omit any or all of them. That is, an alert can be
constructed by passing just three strings to the BAlert constructor—illustrated in
this snippet:

BAlert *alert;

alert = new BAlert("Alert", "Close the My Hello window to quit", "OK");

The fourth and fifth parameters are optionally used for the text of up to two more
buttons that will appear in the alert. The number of buttons in an alert varies
depending on the number of strings passed to the BAlert constructor. By default,
the second and third button titles are NULL, which tells BAlert to place only a sin-
gle button in the alert. A Be-defined constant can be used as the sixth parameter
to BAlert(). This constant specifies the width of the alert’s buttons. By default,
the width of each button will be a standard size (B_WIDTH_AS_USUAL) that is
capable of holding most button titles. Providing a different constant here changes
the width of each button. The final parameter specifies the icon to be displayed in

96 Chapter 3: BeOS API Overview

the upper-left of the alert. By default a lowercase “i” (for “information”) is used (as
denoted by the Be-defined B_INFO_ALERT constant).

The Alert program

In the C03 folder on this book’s CD-ROM, you’ll find two folders: MyHelloWorld
and Alert. The MyHelloWorld folder holds the new version of the MyHelloWorld
project—the version just described. The Alert folder also holds a version of the
MyHelloWorld project. The only difference between the two projects appears in
the MyHelloApplication constructor in the MyHelloWorld.cpp file of the alert exam-
ple. In the alert example, I’ve added four lines of code, shown in bold type here:

MyHelloApplication::MyHelloApplication()
 : BApplication('myWD')
{
 MyHelloWindow *aWindow;
 MyHelloView *aView;
 BRect aRect;
 BAlert *alert;
 long result;

 aRect.Set(20, 20, 250, 100);
 aWindow = new MyHelloWindow(aRect);

 alert = new BAlert("", "Close the My Hello window to quit.", "OK");
 result = alert->Go();
}

This latest incarnation of MyHelloWorld will serve as the base from
which the remainder of this book’s examples are built. To make it
easy to recognize the code that doesn’t change from example to
example (which is most of the code), I won’t rename the files and
classes for each example. That means you’ll always find the familiar
MyHelloView, MyHelloWindow, and HelloApplication classes. As
exhibited in the above snippet, the differences between one version
of MyHelloWorld and another will consist of minimal code changes
or additions. My goal in this book is to present short examples that
consist mostly of existing, thoroughly discussed code, with only a
minimum amount of new code. The new code will be, of course,
code that is pertinent to the topic at hand. To distinguish one
MyHelloWorld project from the next, I’ll simply rename the project
folder to something descriptive of the example. For instance, the
alert example discussed here appears in a folder titled Alert.

In the above call to BAlert(), the first parameter is an empty string that repre-
sents the alert’s title. An alert doesn’t have a tab as a window does, but a title is
required. Passing an empty string suffices here. The second parameter is a string

Chapter Example: Adding an Alert to MyHelloWorld 97

that represents the text that is to appear in the alert. While this trivial example
exists only to show how the alert code integrates into a program, I did want the
alert to have at least some bearing on the program—so I’ve made the alert serve as
a means of letting the user know how to quit the program. The final parameter is
the name that appears on the alert’s button. For a one-button alert, OK is typically
used. Figure 3-2 shows what the alert example program looks like when running.

Figure 3-2. An alert overlapping a window

98

Chapter 4

In this chapter:
• Windows
• Views
• Messaging4

Windows, Views, and
Messages 4.

A window serves as a program’s means of communicating with the user. In order
to provide information to a user, a window needs to be able to draw either text or
graphics. And in order to receive information from a user, a window needs to be
aware of user actions such as mouse button clicks or key presses. Views make
both these modes of communication possible. All drawing takes place in views.
And views are recipients of messages that are transmitted from the Application
Server to the program in response to user actions. All three of these topics—win-
dows, views, and messages—can be discussed individually, and this chapter does
just that. To be of real use, though, the interaction of these topics must be
described; this chapter of course does that as well.

Windows
Your program’s windows will be objects of a class, or classes, that your project
derives from the BWindow class. The BWindow class is one of many classes in the
Interface Kit—the largest of the Be kits. Most other Interface Kit class objects draw
to a window, so they expect a BWindow object to exist—they work in conjunction
with the window object.

Because it is a type of BLooper, a BWindow object runs in its own thread and runs
its own message loop. This loop is used to receive and respond to messages from
the Application Server. In this chapter’s “Messaging” section, you’ll see how a win-
dow often delegates the handling of a message to one of the views present in the
window. The ever-present interaction of windows, views, and messages accounts
for the combining of these three topics in this chapter.

Windows 99

Window Characteristics

A window’s characteristics—its size, screen location, and peripheral elements
(close button, zoom button, and so forth)—are all established in the constructor of
the BWindow-derived class of the window.

BWindow constructor

A typical BWindow-derived class constructor is often empty:

MyHelloWindow::MyHelloWindow(BRect frame)
 :BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
}

The purpose of the constructor is to pass window size and window screen loca-
tion on to the BWindow constructor. In this next snippet, this is done by invoking
the MyHelloWindow constructor, using the BRect parameter frame as the first
argument in the BWindow constructor:

MyHelloWindow *aWindow;
BRect aRect(20, 30, 250, 100);

aWindow = new MyHelloWindow(aRect);

It is the BWindow constructor that does the work of creating a new window. The
four BWindow constructor parameters allow you to specify the window’s:

• Size and screen placement

• Title

• Type or look

• Behavioral and peripheral elements

The BWindow constructor prototype, shown here, has four required parameters
and an optional fifth. Each of the five parameters is discussed following this proto-
type:

BWindow(BRect frame,
 const char *title,
 window_type type,
 ulong flags,
 ulong workspaces = B_CURRENT_WORKSPACE)

Window size and location (frame argument)

The first BWindow constructor parameter, frame, is a rectangle that defines both
the size and screen location of the window. The rectangle’s coordinates are rela-
tive to the screen’s coordinates. The top left corner of the screen is point (0, 0),
and coordinate values increase when referring to a location downward or

100 Chapter 4: Windows, Views, and Messages

rightward. For instance, the lower right corner of a 640 × 480 screen has a screen
coordinate point of (639, 479). Because the initialization of a BRect variable is
specified in the order left, top, right, bottom; the following declaration results in a
variable that can be used to create a window that has a top left corner fifty pixels
from the top of the user’s screen and seventy pixels in from the left of that screen:

BRect frame(50, 70, 350, 270);

The width of the window based on frame is determined simply from the delta of
the first and third BRect initialization parameters, while the height is the differ-
ence between the second and fourth. The above declaration results in a rectangle
that could be used to generate a window 301 pixels wide by 201 pixels high. (The
“extra” pixel in each direction is the result of zero-based coordinate systems.)

The frame coordinates specify the content area of a window—the window’s title
tab is not considered. For titled windows, you’ll want to use a top coordinate of at
least 20 so that none of the window’s title tab ends up off the top of the user’s
screen.

If your program creates a window whose size depends on the dimensions of the
user’s screen, make use of the BScreen class. A BScreen object holds informa-
tion about one screen, and the BScreen member functions provide a means for
your program to obtain information about this monitor. Invoking Frame(), for
instance, returns a BRect that holds the coordinates of the user’s screen. This next
snippet shows how this rectangle is used to determine the width of a monitor:

BScreen mainScreen(B_MAIN_SCREEN_ID);
BRect screenRect;
int32 screenWidth;

screenRect = mainScreen->Frame();
screenWidth = screenRect.right - screenRect.left;

As of this writing, the BeOS supports only a single monitor, but the above snippet
anticipates that this will change. The Be-defined constant B_MAIN_SCREEN_ID is
used to create an object that represents the user’s main monitor (the monitor that
displays the Deskbar). Additionally, the width of the screen can be determined by
subtracting the left coordinate from the right, and the height by subtracting the top
from the bottom. On the main monitor, the left and top fields of the BRect
returned by Frame() are 0, so the right and bottom fields provide the width
and height of this screen. When an additional monitor is added, though, the left
and top fields will be non-zero; they’ll pick up where the main screen “ends.”

Window title

The second BWindow constructor argument, title, establishes the title that is to
appear in the window’s tab. If the window won’t display a tab, this parameter

Windows 101

value is unimportant—you can pass NULL or an empty string ("") here (though
you may want to include a name in case your program may eventually access the
window through scripting.

Window type

The third BWindow constructor parameter, type, defines the style of window to be
created. Here you use one of five Be-defined constants:

B_DOCUMENT_WINDOW
Is the most common type, and creates a nonmodal window that has a title tab.
Additionally, the window has right and bottom borders that are thinner than
the border on its other two sides. This narrower border is designed to inte-
grate well with the scrollbars that may be present in such a window.

B_TITLED_WINDOW
Results in a nonmodal window that has a title tab.

B_MODAL_WINDOW
Creates a modal window, a window that prevents other application activity
until it is dismissed. Such a window is also referred to as a dialog box. A win-
dow of this type has no title tab.

B_BORDERED_WINDOW
Creates a nonmodal window that has no title tab.

B_FLOATING_WINDOW
Creates a window that floats above (won’t be obscured by) other application
windows.

There’s another version of the BWindow constructor that has two
parameters (look and feel) in place of the one type parameter dis-
cussed above. The separate look and feel parameters provide a
means of more concisely stating just how a window is to look and
behave. The single type parameter can be thought of as a shorthand
notation that encapsulates both these descriptions. Refer to the
BWindow class section of the Interface Kit chapter of the Be Book for
more details (and a list of Be-defined look and feel constants).

Window behavior and elements

The fourth BWindow constructor argument, flags, determines a window’s behav-
ior (such as whether the window is movable) and the window’s peripheral ele-
ments (such as the presence of a title tab or zoom button). There are a number of
Be-defined constants that can be used singly or in any combination to achieve the
desired window properties. To use more than a single constant, list each and

102 Chapter 4: Windows, Views, and Messages

separate them with the OR (|) operator. The following example demonstrates how
to create a window that has no zoom button or close button:

MyHelloWindow::MyHelloWindow(BRect frame)
 :BWindow(frame, windowName, B_TITLED_WINDOW, B_NOT_ZOOMABLE | B_NOT_
CLOSABLE)
{
}

If you use 0 (zero) as the fourth parameter, it serves as a shortcut for specifying
that a window include all the characteristics expected of a titled window. Default
windows are movable, resizable, and have close and zoom buttons:

MyHelloWindow::MyHelloWindow(BRect frame)
 :BWindow(frame, windowName, B_TITLED_WINDOW, 0)
{
}

The following briefly describes many of the several Be-defined constants available
for use as the fourth parameter in the BWindow constructor:

B_NOT_MOVABLE
Creates a window that cannot be moved—even if the window has a title tab.
By default, a window with a title tab is movable.

B_NOT_H_RESIZABLE
Generates a window that can’t be resized horizontally. By default, a window
can be resized both horizontally and vertically.

B_NOT_V_RESIZABLE
Generates a window that can’t be resized vertically. By default, a window can
be resized both horizontally and vertically.

B_NOT_RESIZABLE
Creates a window that cannot be resized horizontally or vertically.

B_NOT_CLOSABLE
Results in a window that has no close button. By default, a window with a
title tab has a close button.

B_NOT_ZOOMABLE
Results in a window that has no zoom box. By default, a window with a title
tab has a zoom box.

B_NOT_MINIMIZABLE
Defines a window that cannot be minimized (collapsed). By default, a win-
dow can be minimized by double-clicking on the window’s title bar.

Windows 103

B_WILL_ACCEPT_FIRST_CLICK
Results in a window that is aware of mouse button clicks in it—even when the
window isn’t frontmost. By default, a window is aware only of mouse button
clicks that occur when the window is the frontmost, or active, window.

Workspace

The BWindow constructor has an optional fifth parameter, workspaces, that speci-
fies which workspace or workspaces should contain the new window. Desktop
information such as screen resolution and color depth (number of bits of color
data per pixel) can be adjusted by the user. Different configurations can be saved
to different workspaces. Workspaces can be thought of as virtual monitors to
which the user can switch. Under different circumstances, a user may wish to dis-
play different types of desktops. By omitting this parameter, you tell the BWindow
constructor to use the default Be-defined constant B_CURRENT_WORKSPACE. Doing
so means the window will show up in whatever workspace is currently selected
by the user. To create a window that appears in all of the user’s workspaces, use
the Be-defined constant B_ALL_WORKSPACES as the fifth parameter to the BWindow
constructor.

You can find out more about workspaces from the user’s perspec-
tive in the BeOS User’s Guide, and from the programmer’s per-
spective in the BWindow constructor section of the Interface Kit
chapter of the Be Book.

Accessing Windows

Fortunately for you, the programmer, the Be operating system takes care of much
of the work in keeping track of your application’s windows and the user’s actions
that affect those windows. There will be times, however, when you’ll need to
directly manipulate one or all of your program’s windows. For instance, you may
want to access the frontmost window to draw to it, or access all open windows to
implement a Close All menu item.

The Application Server keeps a list that holds references to an application’s open
windows. The list indices begin at 0, and continue integrally. The windows aren’t
entered in this list in any predefined order, so you can’t rely on a particular index
referencing a particular window. You can, however, use the BApplication mem-
ber function WindowAt() to find any given window.

104 Chapter 4: Windows, Views, and Messages

Accessing a window using WindowAt()

WindowAt() accepts a single argument, an integer that serves as a window list
index. Calling WindowAt() returns the BWindow object this index references. A
call to WindowAt() returns the first window in the list:

BWindow *aWindow;

aWindow = be_app->WindowAt(0);

From Chapter 1, BeOS Programming Overview, you know that the Be-defined glo-
bal variable be_app always points to the active application, so you can use it any-
where in your code to invoke a BApplication member function such as
WindowAt().

When WindowAt() is passed a value that is an out-of-bounds index, the routine
returns NULL. You can use this fact to create a simple loop that accesses each
open window:

BWindow *theWindow;
int32 i = 0;

while (theWindow = be_app->WindowAt(i++)) {
 // do something, such as close theWindow
}

The preceding loop starts at window 0 in the window list and continues until the
last window in the list is reached.

A good use for the WindowAt() loop is to determine the frontmost window. The
BWindow member function IsFront() returns a bool (Boolean) value that indi-
cates whether a window is frontmost. If you set up a loop to cycle through each
open window and invoke IsFront() for each returned window, the frontmost
window will eventually be encountered:

BWindow *theWindow;
BWindow *frontWindow = NULL;
int32 i = 0;

while (theWindow = be_app->WindowAt(i++)) {
 if (theWindow->IsFront())
 frontWindow = theWindow;
}

In the preceding snippet, note that frontWindow is initialized to NULL. If no win-
dows are open when the loop runs, frontWindow will retain the value of NULL,
properly indicating that no window is frontmost.

Windows 105

Frontmost window routine

With the exception of main(), all the functions you’ve encountered to this point
have been part of the BeOS API—they’ve all been Be-defined member functions
of Be-defined classes. Your nontrivial projects will also include application-defined
member functions, either in classes you define from scratch or in classes you
derive from a Be-defined class. Here I provide an example of this second cate-
gory of application-defined routine. The MyHelloApplication class is derived
from the Be-defined BApplication class. This version of MyHelloApplication
adds a new application-defined routine to the class declaration:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 BWindow * GetFrontWindow();
};

The function implementation is familiar to you—it’s based on the previous snip-
pet that included a loop that repeatedly calls AtWindow():

BWindow * MyHelloApplication::GetFrontWindow()
{
 BWindow *theWindow;
 BWindow *frontWindow = NULL;
 int32 i = 0;

 while (theWindow = be_app->WindowAt(i++)) {
 if (theWindow->IsFront())
 frontWindow = theWindow;
 }
 return frontWindow;
}

When execution of GetFrontWindow() ends, the routine returns the BWindow
object that is the frontmost window. Before using the returned window, typecast it
to the BWindow-derived class that matches its actual type, as in:

MyHelloWindow *frontWindow;

frontWindow = (MyHelloWindow *)GetFrontWindow();

With access to the frontmost window attained, any BWindow member function can
be invoked to perform some action on the window. Here I call the BWindow mem-
ber function MoveBy() to make the frontmost window jump down and to the
right 100 pixels in each direction:

frontWindow->MoveBy(100, 100);

106 Chapter 4: Windows, Views, and Messages

Frontmost window example project

I’ve taken the preceding GetFrontWindow() routine and included it in a new ver-
sion of MyHelloWorld. To test out the function, I open three MyHelloWorld win-
dows, one directly on top of another. Then I call GetFrontWindow() and use the
returned BWindow reference to move the frontmost window off the other two. The
result appears in Figure 4-1.

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-mywd")
{
 MyHelloWindow *aWindow;
 BRect aRect;
 MyHelloWindow *frontWindow;

 aRect.Set(20, 30, 250, 100);
 aWindow = new MyHelloWindow(aRect);
 aWindow = new MyHelloWindow(aRect);
 aWindow = new MyHelloWindow(aRect);

 frontWindow = (MyHelloWindow *)GetFrontWindow();
 if (frontWindow)
 frontWindow->MoveBy(100, 100);
}

Notice that before working with the returned window reference, I verify that it has
a non-NULL value. If no windows are open when GetFrontWindow() is invoked,
that routine returns NULL. In such a case, a call to a BWindow member function
such as MoveBy() will fail.

The MyHelloWindow class doesn’t define any of its own member functions—it
relies on BWindow-inherited functions. So in this example, I could have declared
frontWindow to be of type BWindow and omitted the typecasting of the returned
BWindow reference. This code would still work:

...
BWindow *frontWindow;

Figure 4-1. The result of running the FrontWindow program

Windows 107

...
frontWindow = GetFrontWindow();
 if (frontWindow)
 frontWindow->MoveBy(100, 100);
}

But instead of working with the returned reference as a BWindow object, I opted to
typecast it to a MyHelloWindow object. That’s a good habit to get into—the type
of window being accessed is then evident to anyone looking at the source code
listing. It also sets up the returned object so that it can invoke any BWindow-
derived class member function. A BWindow object knows about only BWindow
functions, so if I define a SpinWindow() member function in the MyHelloWindow
class and then attempt to call it without typecasting the GetFrontWindow()-
returned BWindow reference, the compiler will complain:

BWindow *frontWindow;

frontWindow = GetFrontWindow();
if (frontWindow)
 frontWindow->SpinWindow(); // compilation error at this line

The corrected version of the above snippet looks like this:

MyHelloWindow *frontWindow;

frontWindow = (MyHelloWindow *)GetFrontWindow();
if (frontWindow)
 frontWindow->SpinWindow(); // compiles just fine!

Windows and Data Members

Defining a GetFrontWindow() or some similar member function to locate a win-
dow is one way to access a window. If you have only one instance of any given
window class in your program, though, you should consider using a technique
that stores window references in data members in the application object.

Defining a window object data member in the application class

For each type of window in your application, you can add to the class definition a
private data member of the window class type. Consider a program that displays
two windows: an input window for entering a mathematical equation, and an out-
put window that displays a graph of the entered equation. If such a program
defines BWindow-derived classes named EquationWindow and GraphWindow, the
BApplication-derived class could include two data members. As shown below,
Be convention uses a lowercase f as the first character of a data member name:

class MathApp : public BApplication {

 public:
 MathApp();

108 Chapter 4: Windows, Views, and Messages

 ...
 private:
 EquationWindow *fEquationWindow;
 GraphWindow *fGraphWindow;
};

For the MyHelloWorld project, the MyHelloApplication class is defined as:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();

 private:
 MyHelloWindow *fMyWindow;
};

Storing a window object in the data member

In past examples, I created an instance of a window by declaring a local window
variable in the application constructor, then using that variable in a call to the win-
dow’s class constructor:

MyHelloWindow *aWindow;
...
aWindow = new MyHelloWindow(aRect);

With the new technique, there’s no need to use a local variable. Instead, assign the
object returned by the window constructor to the window data member. The new
version of the MyHelloApplication class defines an fMyWindow data member,
so the result would be:

fMyWindow = new MyHelloWindow(aRect);

Here’s how the new version of the MyHelloApplication constructor looks:

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-mywd")
{
 BRect aRect;

 aRect.Set(20, 30, 250, 100);
 fMyWindow = new MyHelloWindow(aRect);
}

Once created, the new window can be accessed from any application member
function. For instance, to jump the window across part of the screen requires only
one statement:

fMyWindow->MoveBy(100, 100);

Windows 109

Window object data member example projects

This chapter’s MyHelloWorld project consists of the new version of the
MyHelloApplication class—the version that includes an fMyWindow data mem-
ber. The executable built from this project is indistinguishable from that built from
prior versions of the project; running the program results in the display of a single
window that holds the string “Hello, My World!”

The WindowTester project picks up where MyHelloWorld leaves off. Like MyHel-
loWorld, it includes an fMyWindow data member in the MyHelloApplication
class. The WindowTester version of the MyHelloApplication class also includes
a new application-defined member function:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 void DoWindowStuff();

 private:
 MyHelloWindow *fMyWindow;
};

After creating a window and assigning it to the fMyWindow data member, the
MyHelloApplication constructor invokes DoWindowStuff():

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-mywd")
{
 BRect aRect;

 aRect.Set(20, 30, 250, 100);
 fMyWindow = new MyHelloWindow(aRect);

 DoWindowStuff();
}

I’ve implemented DoWindowStuff() such that it glides the program’s one win-
dow diagonally across the screen:

void MyHelloApplication::DoWindowStuff()
{
 int16 i;

 for (i=0; i<200; i++) {
 fMyWindow->MoveBy(1, 1);
 }
}

110 Chapter 4: Windows, Views, and Messages

Feel free to experiment by commenting out the code in
DoWindowStuff() and replacing it with code that has fMyWindow
invoke BWindow member functions other than MoveBy(). Refer to
the BWindow section of the Interface Kit chapter of the Be Book for
the details on such BWindow member functions as Close(), Hide(),
Show(), Minimize(), ResizeTo(), and SetTitle().

Views
A window always holds one or more views. While examples up to this point have
all displayed windows that include only a single view, real-world Be applications
make use of windows that often consist of a number of views. Because all draw-
ing must take place in a view, everything you see within a window appears in a
view. A scrollbar, button, picture, or text lies within a view. The topic of drawing
in views is significant enough that it warrants its own chapter—Chapter 5, Draw-
ing. In this chapter, the focus will be on how views are created and accessed.
Additionally, you’ll get an introduction to how a view responds to a message.

A view is capable of responding to a message sent from the Application Server to
a BWindow object and then on to the view. This messaging system is the principle
on which controls such as buttons work. The details of working with controls are
saved for Chapter 6, Controls and Messages, but this chapter ends with a discus-
sion of views and messages that will hold you over until you reach that chapter.

Accessing Views

You’ve seen that a window can be accessed by storing a reference to the window
in the BApplication-derived class (as demonstrated with the fMyWindow data
member) or via the BeOS API (through use of the BApplication member func-
tion WindowAt()). A similar situation exists for accessing a view.

Views and data members

Just as a reference to a window can be stored in an application class data mem-
ber, a reference to a view can be stored in a window class data member. The
MyHelloWorld project defines a single view class named MyHelloView that is
used with the project’s single window class, the MyHelloWindow class. Here I’ll
add a MyHelloView reference data member to the MyHelloWindow class:

class MyHelloWindow : public BWindow {

 public:

Views 111

 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();

 private:
 MyHelloView *fMyView;
};

Using this new technique, a view can be added to a new window in the win-
dow’s constructor, much as you’ve seen in past examples. The MyHelloWindow
constructor creates a new view, and a call to the BWindow member function
AddChild() makes the view a child of the window:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 Show();
}

The window’s view can now be easily accessed and manipulated from any
MyHelloWindow member function.

View data member example projects

This chapter’s NewMyHelloWorld project includes the new versions of the
MyHelloWindow class and the MyHelloWindow constructor—the versions devel-
oped above. Once again, performing a build on the project results in an execut-
able that displays a single “Hello, My World!” window. This is as expected. Using a
data member to keep track of the window’s one view simply sets up the window
for easy access to the view—it doesn’t change how the window or view behaves.

The ViewDataMember project serves as an example of view access via a data
member—the fMyView data member that was just added to the NewMyHel-
loWorld project. Here’s how the ViewDataMember project defines the
MyHelloWindow class:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 void SetHelloViewFont(BFont newFont, int32 newSize);

 private:
 MyHelloView *fMyView;
};

112 Chapter 4: Windows, Views, and Messages

The difference between this project and the previous version is that this project
uses the newly added SetHelloViewFont() member function to set the type and
size of the font used in a view. In particular, the project calls this routine to set the
characteristics of the font used in the MyHelloView view that the fMyView data
member references. Here’s what the SetHelloViewFont() implementation looks
like:

void MyHelloWindow::SetHelloViewFont(BFont newFont, int32 newSize)
{
 fMyView->SetFont(&newFont);
 fMyView->SetFontSize(newSize);
}

SetFont() and SetFontSize() are BView member functions with which you are
familiar—they’re both invoked from the MyHelloView AttachedToWindow()
function, and were introduced in Chapter 2, BeIDE Projects.

To change a view’s font, SetHelloViewFont() is invoked by a MyHelloWindow
object. To demonstrate its use, I chose to include the call in the MyHelloWindow
constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 BFont theFont = be_plain_font;
 int32 theSize = 12;
 SetHelloViewFont(theFont, theSize);

 Show();
}

The call to SetHelloViewFont() results in the about-to-be shown window hav-
ing text characteristics that include a font type of plain and a font size of 12.
Figure 4-2 shows the results of creating a new window. While
SetHelloViewFont() is a trivial routine, it does the job of demonstrating view
access and the fact that characteristics of a view can be changed at any time dur-
ing a program’s execution.

Figure 4-2. The ViewDataMember window displays text in a 12-point plain font

Views 113

Accessing a view using FindView()

When a view is created, one of the arguments passed to the view constructor is a
string that represents the view’s name:

fMyView = new MyHelloView(frame, "MyHelloView");

The MyHelloView class constructor invokes the BView constructor to take care of
the creation of the view. When it does that, it in turn passes on the string as the
second argument, as done here:

MyHelloView::MyHelloView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

If your code provides each view with a unique name, access to any particular
view can be easily gained by using the BWindow member function FindView().
For instance, in this next snippet a pointer to the previously created view with the
name “MyHelloView” is being obtained. Assume that the following code is called

A More Practical Use For SetHelloViewFont()
Attaching a view to a window by calling AddChild() automatically invokes
the view’s AttachedToWindow() routine to take care of any final view setup.
Recall that the MyHelloView class overrides this BView member function and
invokes SetFont() and SetFontSize() in the AttachedToWindow() imple-
mentation:

void MyHelloView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);
}

So it turns out that in the above version of the MyHelloWindow constructor,
the view’s font information is set twice, almost in succession. The result is that
when the view is displayed, the last calls to SetFont() and SetFontSize()
are used when drawing in the view, as shown in Figure 4-2.

Because this example project has very few member functions (intentionally, to
keep it easily readable), I’m limited in where I can place a call to
SetHelloViewFont(). In a larger project, a call to SetHelloViewFont()
might be invoked from the code that responds to, say, a button click or a menu
item selection. After reading Chapter 6 and Chapter 7, Menus, you’ll be able to
easily try out one of these more practical uses for a routine such as
SetHelloViewFont().

114 Chapter 4: Windows, Views, and Messages

from within a MyHelloApplication member function, and that a window has
already been created and a reference to it stored in the MyHelloApplication
data member fMainWindow:

MyHelloView *theView;

theView = (MyHelloView *)fMainWindow->FindView("MyHelloView");

FindView() returns a BView object. The above snippet typecasts this BView
object to one that matches the exact type of view being referenced—a
MyHelloView view.

FindView() example project

The FindByName project does just that—it finds a view using a view name. This
project is another version of this chapter’s MyHelloWorld. Here I keep track of the
program’s one window using a data member in the MyHelloApplication class. A
reference to the program’s one view isn’t, however, stored in a data member in the
MyHelloWindow class. Instead, the view is accessed from the window using a call
to FindView(). Here’s the MyHelloWindow constructor that creates a view named
“MyHelloView” and adds it to a new window:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 MyHelloView *aView;

 frame.OffsetTo(B_ORIGIN);
 aView = new MyHelloView(frame, "MyHelloView");
 AddChild(aView);

 Show();
}

The MyHelloWindow member function QuitRequested() has remained
unchanged since its introduction in Chapter 1. All it did was post a B_QUIT_
REQUESTED and return true. I’ll change that by adding a chunk of code.
Figure 4-3 shows how the program’s window looks just before closing.

bool MyHelloWindow::QuitRequested()
{
 MyHelloView *aView;
 bigtime_t microseconds = 1000000;

 aView = (MyHelloView *)FindView("MyHelloView");
 if (aView) {
 aView->MovePenTo(BPoint(20, 60));
 aView->DrawString("Quitting...");
 aView->Invalidate();
 }

Views 115

 snooze(microseconds);

 be_app->PostMessage(B_QUIT_REQUESTED);
 return(true);
}

The new version of QuitRequested() now does the following:

• Accesses the view named “MyHelloView.”

• Calls a few BView member functions to draw a string and update the view.

• Pauses for one second.

• Closes the window and quits.

Several lines of code are worthy of further discussion.

The “Accessing a view using FindView()” section in this chapter demonstrates the
use of FindView() from an existing window object:

MyHelloView *theView;

theView = (MyHelloView *)fMainWindow->FindView("MyHelloView");

This latest example demonstrates the use of FindView() from within a window
member function. The specific object FindView() acts on is the one invoking
QuitRequested(), so unlike the above example, here no MyHelloWindow object
variable precedes the call to FindView():

MyHelloView *aView;

aView = (MyHelloView *)FindView("MyHelloView");

With a reference to the MyHelloView object, QuitRequested() can invoke any
BView member function. MovePenTo() and DrawString() are functions you’ve
seen before—they also appear in the MyHelloView member function Draw().
Invalidate() is new to you. When a view’s contents are altered—as they are
here with the writing of the string “Quitting...”—the view needs to be updated
before the changes become visible onscreen. If the changes are made while the
view’s window is hidden, then the subsequent act of showing that window brings

Figure 4-3. The FindByName program adds text to a window before closing it

116 Chapter 4: Windows, Views, and Messages

on the update. Here, with the window showing and frontmost, no update auto-
matically occurs after the call to DrawString(). The BView member function
Invalidate() tells the system that the current contents of the view are no longer
valid and require updating. When the system receives this update message, it
immediately obliges the view by redrawing it.

Finally, the snooze() function is new to you. The BeOS API includes a number of
global, or nonmember, functions—snooze() is one of them. A global function
isn’t associated with any class or object, so once the BApplication-defined object
is created in main(), it can be called from any point in a program. The snooze()
function requires one argument, the number of microseconds for which execution
should pause. The parameter is of type bigtime_t, which is a typedef equiva-
lent to the int64 datatype. Here, the first call to snooze() pauses execution for
one million microseconds, or one second, while the second call pauses execution
for fifty thousand microseconds, or one-twentieth of one second:

bigtime_t microseconds = 1000000;

snooze(microseconds);
snooze(50000);

In this book I’ll make occasional use of a few global functions. In
particular, you’ll see calls to snooze() and beep() in several exam-
ples. You’ll quickly recognize a function as being global because it
starts with a lowercase character. A global function is associated with
one of the Be kits, so you’ll find it documented in the Global Func-
tions section of the appropriate kit chapter in the Be Book. For
instance, snooze() puts a thread to sleep, so it’s documented in
the thread-related chapter of the Be Book, the Kernel Kit chapter.
The beep() global function plays the system beep. Sound (and thus
the beep() function) is a topic covered in the Media Kit chapter of
the Be Book.

View Hierarchy

A window can hold any number of views. When a window holds more than one,
the views fall into a hierarchy.

Top view

Every window contains at least one view, even if none is explicitly created and
added with calls to AddChild(). That’s because upon creation, a window is
always automatically given a top view—a view that occupies the entire content
area of the window. Even if the window is resized, the top view occupies the

Views 117

entire window content. A top view exists only to serve as an organizer, or con-
tainer, of other views. The other views are added by the application. Such an
application-added view maps out a window area that has its own drawing charac-
teristics (such as font type and line width), is capable of being drawn to, and is
able to respond to messages.

Application-added views and the view hierarchy

Each view you add to the window falls into a window view hierarchy. Any view
that is added directly to the window (via a call to the BWindow member function
AddChild()) falls into the hierarchy just below the top view. Adding a few views
to a window in this way could result in a window and view hierarchy like those
shown in Figure 4-4.

When a view is added to a window, there is no visible sign that the
view exists. So in Figure 4-4, the window’s views—including the top
view—are outlined and are named. The added views have also been
given a light gray background. While the view framing, shading, and
text have been added for clarity, you could in fact easily create a
window that highlighted its views in this way. You already know
how to add text to a view using DrawString(). Later in this chap-
ter you’ll see how to draw a rectangle in a view. And in Chapter 5
you’ll see how to change the background color of a view.

The views you add to a window don’t have to exist on the same hierarchical level;
they can be nested one inside another. Figure 4-5 shows another window with
three views added to the top view. Here, one view has been placed inside
another.

Figure 4-4. A window with three views added to it and that window’s view hierarchy

Top
View

View1 View3View2

118 Chapter 4: Windows, Views, and Messages

To place a view within another, you add the view to the container view rather
than to the window. Just as the BWindow class has an AddChild() member func-
tion, so does the BView class. This next snippet shows a window constructor that
creates two views. The first is 200 pixels by 300 pixels in size, and is added to the
window. The second 150 pixels by 150 pixels, and is added to the first view.

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "Nested Views", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 BRect viewFrame;
 MyHelloView *view1;
 MyHelloView *view2;

 viewFrame.Set(30, 30, 230, 330);
 view1 = new MyHelloView(viewFrame, "MyFirstView");
 AddChild(view1);

 viewFrame.Set(10, 10, 160, 160);
 view2 = new MyHelloView(viewFrame, "MySecondView");
 view1->AddChild(view2);

 Show();
}

Multiple views example project

Later in this chapter you’ll see a few example projects that place two views of type
MyHelloView in a window. Having the views be the same type isn’t required, of
course—they can be different class types. The TwoViewClasses project defines a
view named MyDrawView and adds one such view to a window, along with an
instance of the MyHelloView class with which you’re already familiar. Figure 4-6
shows the window that results from running the TwoViewClasses program.

Figure 4-5. A window with nested views added to it and that window’s view hierarchy

Top
View

View1 View3

View2

Views 119

In keeping with the informal convention of placing the code for a class declara-
tion in its own header file and the code for the implementation of the member
functions of that class in its own source code file, the TwoViewClasses project
now has a new source code file added to it. Figure 4-7 shows the project window
for this project.

I haven’t shown a project window since Chapter 2, and won’t show
one again. I did it here to lend emphasis to the way in which
projects are set up throughout this book (and by many other Be pro-
grammers as well).

I created the new class by first copying the MyHelloView.h and MyHelloView.cpp
files and renaming them to MyDrawView.h and MyDrawView.cpp, respectively. My
intent here is to demonstrate that a project can derive any number of classes from
the BView class and readily mix them in any one window. So I’ll only make a cou-
ple of trivial changes to the copied MyHelloView class to make it evident that this
is a new class. In your own project, the BView-derived classes you define may be
very different from one another.

Figure 4-6. A window that holds two different types of views

Figure 4-7. The TwoViewClasses project window shows the addition of a new source code file

120 Chapter 4: Windows, Views, and Messages

With the exception of the class name and the name of the constructor, the
MyDrawView class declaration is identical to the MyHelloView class declaration.
From the MyDrawView.h file, here’s that declaration:

class MyDrawView : public BView {

public:
 MyDrawView(BRect frame, char *name);
virtual void AttachedToWindow();
virtual void Draw(BRect updateRect);
};

Like the MyHelloView constructor, the MyDrawView constructor is empty:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

The MyDrawView member function AttachedToWindow() sets up the view’s font
and font size. Whereas the MyHelloView specified a 12-point font, the
MyDrawView specifies a 24-point font:

void MyHelloView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);
}

Except for the text drawn to the view, the MyDrawView member function Draw()
looks like the MyHelloView version of this function:

void MyDrawView::Draw(BRect)
{
 BRect frame = Bounds();
 StrokeRect(frame);

 MovePenTo(BPoint(10, 30));
 DrawString("This is a MyDrawView view");
}

To create a further contrast in the way the two views display text, I turned to the
MyHelloView and made one minor modification. In the AttachedToWindow()
member function of that class, I changed the font set by SetFont() from be_
bold_font to be_plain_font. Refer to Figure 4-6 to see the difference in text
appearances in the two views.

In order for a window to be able to reference both of the views it will hold, a new
data member has been added to the MyHelloWindow class. In the MyHelloWin-
dow.h header file, you’ll find the addition of a MyDrawView data member named
fMyDrawView:

Views 121

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();

 private:
 MyHelloView *fMyView;
 MyDrawView *fMyDrawView;
};

In the past the MyHelloWindow constructor created and added a single view to
itself. Now the constructor adds a second view:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.Set(0, 0, 200, 20);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 frame.Set(0, 21, 350, 300);
 fMyDrawView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyDrawView);

 Show();
}

Both views have been added directly to the window (to the top view), rather than
to another view, so both views are on the same level in the window’s view hierar-
chy. The Draw() function of each view type includes code to frame the view, so
you can easily see the results of any view size changes you might make to the
views here in the MyHelloWindow constructor.

Coordinate System

In order to specify where a window is to be placed on the screen and where a
view is to be placed within a window, a coordinate system is required.

Global coordinate system

To allow a programmer to reference any point on the computer screen, Be defines
a coordinate system that gives every pixel a pair of values: one for the pixel’s dis-
tance from the left edge of the screen and one for the pixel’s distance from the top
of the screen. Figure 4-8 points out a few pixels and their corresponding coordi-
nate pairs.

For display devices, the concept of fractional pixels doesn’t apply. Consider a win-
dow that is to have its top left corner appear 100 pixels from the left edge of the
screen and 50 pixels from the top of the screen. This point is specified as (100.0,

122 Chapter 4: Windows, Views, and Messages

50.0). If the point (100.1, 49.9) is used instead, the result is the same—the win-
dow’s corner ends up 100 pixels from the left and 50 pixels from the top of the
screen.

The above scenario begs the question: if the coordinates of pixel locations are sim-
ply rounded to integral values, why use floating points at all? The answer lies in
the current state of output devices: most printers have high resolutions. On such a
device, one coordinate unit doesn’t map to one printed dot. A coordinate unit is
always 1/72 of an inch. If a printer has a resolution of 72 dots per inch by 72 dots
per inch (72 dpi × 72 dpi), then one coordinate unit would in fact translate to one
printed dot. Typically printers have much higher resolutions, such as 300 dpi or
600 dpi. If a program specifies that a horizontal line be given a height of 1.3 units,
then that line will occupy one row of pixels on the screen (the fractional part of
the line height is rounded off). When that same line is sent to a printer with a res-
olution of 600 dpi, however, that printer will print the line with a height of 11
rows. This value comes from the fact that one coordinate unit translates to 8.33
dots (that’s 1/72 of 600). Here there is no rounding of the fractional coordinate
unit, so 1.3 coordinate units is left at 1.3 units (rather than 1 unit) and translates to
11 dots (1.3 times 8.33 is 10.83). Whether the line is viewed on the monitor or on
hardcopy, it will have roughly the same look—it will be about 1/72 inch high. It’s
just that the rows of dots on a printer are denser than the rows of pixels on the
monitor.

Window coordinate system

When a program places a view in a window, it does so relative to the window,
not to the screen. That is, regardless of where a window is positioned on the
screen when the view is added, the view ends up in the same location within the
content area of the window. This is possible because a window has its own

Figure 4-8. The global coordinate system maps the screen to a two-dimensional graph

x-axis

y-axis

(0.0, 0.0) (100.0, 0.0)

(150.0, 50.0)

(0.0, 100.0)

Views 123

coordinate system—one that’s independent of the global screen coordinate sys-
tem. The type of system is the same as the global system (floating point values that
get larger as you move right and down)—but the origin is different. The origin of
a window’s coordinate system is the top left corner of the window’s content area.

When a program adds a view to a window, the view’s boundary rectangle values
are stated in terms of the window’s coordinate system. Consider the following win-
dow constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 MyHelloView *aView;
 BRect viewFrame(20.0, 30.0, 120.0, 130.0);

 aView = new MyHelloView(viewFrame, "MyHelloView");
 AddChild(aView);

 Show();
}

The coordinate systems for the window and the view are different. The window’s
size and screen placement, which are established by the BRect variable frame
that is passed to the constructor, are expressed in the global coordinate system.
The view’s size and placement, established by the local BRect variable
viewFrame, are expressed in the window coordinate system. Regardless of where
the window is placed, the view aView will have its top left corner at point (20.0,
30.0) within the window.

In all previous examples, the arguments to a BRect constructor, or
to the BRect member function Set(), were integer values, such as
(20, 30, 120, 130). Since none of the examples were concerned with
high precision printouts, that technique worked fine. It also may
have been comforting to you if you come from a Mac or Windows
programming background, where rectangle boundaries use integral
values. Now that we’ve seen the true nature of the BeOS coordinate
system, however, we’ll start—and continue—to use floating point
values.

View coordinate system

When a program draws in a view, it draws relative to the view, not to the win-
dow or the screen. It doesn’t matter where a window is onscreen, or where a view
is within a window—the drawing will take place using the view’s own coordinate
system. Like the global and window coordinate systems, the view coordinate sys-
tem is one of floating point coordinate pairs that increase in value from left to right

124 Chapter 4: Windows, Views, and Messages

and from top to bottom. The origin is located at the top left corner of the view.
Consider this version of the MyHelloView member function Draw():

void MyHelloView::Draw(BRect)
{
 MovePenTo(BPoint(10.0, 30.0));
 DrawString("Hello, My World!");
}

The arguments in the call to the BView member function MovePenTo() are local
to the view’s coordinate system. Regardless of where the view is located within its
window, text drawing will start 10 units in from the left edge of the view and 30
units down from the top edge of the view.

Figure 4-9 highlights the fact that there are three separate coordinate systems at
work in a program that displays a window that holds a view.

Coordinate system example projects

To determine the size of a view in its own coordinate system (whether the view
resides in a window or within another view), begin by invoking the BView mem-
ber function Bounds(). In this chapter’s OneView project, a call to this function
has been added to the MyHelloView member function Draw(). One other BView
member function call has been added too—a call to StrokeRect(). This routine
draws a rectangle at the coordinates specified by the BRect argument passed to it:

void MyHelloView::Draw(BRect)
{
 BRect frame = Bounds();
 StrokeRect(frame);

Figure 4-9. The screen, windows, and views have their own coordinate systems

(0.0, 0.0)

(0.0, 0.0)

(0.0, 0.0)

Views 125

 MovePenTo(BPoint(10.0, 30.0));
 DrawString("Hello, My World!");
}

Since the rectangle returned by the Bounds() function call is relative to the view’s
own coordinate system, the left and top fields are always 0.0. The right and
bottom fields reveal the view’s width and height, respectively.

To find a view’s boundaries relative to the window or view it resides in, call the
BView member function Frame(). The rectangle returned by a call to Frame()
has left and top fields that indicate the view’s distance in and down from the
window or view it resides in.

The OneView project creates a single MyHelloView view and adds it to a win-
dow. These steps take place in the MyHelloWindow constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyHelloView(frame, "MyHelloView");

 AddChild(fMyView);
 Show();
}

Now that you know about the different coordinate systems, setting up the view
rectangle might make more sense to you. In the above snippet, the BRect parame-
ter frame holds the coordinates of the window. These coordinates directly define
the screen placement of the window and indirectly define the size of the window
(subtract frame.left from frame.right to get the window’s width, and sub-
tract frame.top from frame.bottom to get the window’s height). Calling the
BRect member function OffsetTo() with B_ORIGIN as the parameter shifts these
coordinates so that each of the frame.left and frame.top fields has a value of
0.0. The overall size of the frame rectangle itself, however, doesn’t change—it is
still the size of the window. It just no longer reflects the screen positioning of the
window. Next, the view that is to be added to the window is created. The view is
to be positioned in the window using the window’s coordinate system, so if the
view is to fit snugly in the window, the view must have its top left corner at the
window’s origin. The frame rectangle that was initially used to define the place-
ment and size of the window can now be used to define the placement and size
of the view that is to fill the window.

When the BWindow member function Show() is invoked from the window con-
structor, the window is drawn to the screen and the view’s Draw() function is
automatically called to update the view. When that happens, the view is out-
lined—the Draw() function draws a line around the perimeter of the view.
Figure 4-10 shows the result of creating a new window in the OneView project.

126 Chapter 4: Windows, Views, and Messages

Because the window’s one view is exactly the size of the content area of the win-
dow, the entire content area gets a line drawn around it.

The OneSmallView project is very similar to the OneView project—both draw a
frame around the one view that resides in the program’s window. To demonstrate
that a view doesn’t have to occupy the entire content area of a window, the One-
SmallView project sets up the view’s boundary rectangle to be smaller than the
window. This is done in the MyHelloWindow constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.Set(100.0, 80.0, 250.0, 120.0);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 Show();
}

Here the line that offsets the window boundary rectangle (the BRect parameter
frame) has been replaced by one that calls the BRect member function Set() to
reset all the values of the frame rectangle. Figure 4-11 shows the resulting win-
dow. Note that a view is aware of its own boundaries, so that when you try to
draw (or write) beyond a view edge, the result is truncated.

Messaging
As discussed in Chapter 1, the Application Server communicates with (serves) an
application by making the program aware of user actions. This communication is
done in the form of system messages sent from the server to the application. Mes-

Figure 4-10. Drawing a rectangle around the OneView window’s view

Figure 4-11. When a view is too small for the window content

Messaging 127

sages are received by a window and, often, passed on to a view in that window.
The BeOS shoulders most of the responsibility of this communication between the
Application Server, windows, and views. Your application (typically a view in a
window in your application) is responsible for performing some specific action in
response to a message.

System Messages

A system message is sent from the Application Server to a BLooper object. Both
the BApplication and BWindow classes are derived from BLooper, so objects of
these two classes (or objects of classes derived from these two classes) can receive
messages. The Application server is responsible for directing a system message to
the appropriate type of object.

The message loop of a program’s BWindow-derived object receives messages that
hold information about user actions. If the user typed a character, that character
may need to be entered into a window. If the user clicked a mouse button, that
click may have been made while the cursor was over a button in the window. The
system message types of these two user actions are B_KEY_DOWN and B_MOUSE_
DOWN. Such BWindow-directed system messages are referred to as interface mes-
sages.

The message loop of a program’s BApplication-derived object receives mes-
sages that pertain to the application itself (as opposed to messages that pertain to
a window or view, which are sent to a BWindow-derived object). If the user
chooses the About menu item present in most programs, the program dispatches
to the application object a message of type B_ABOUT_REQUESTED. Such
BApplication-directed system messages are referred to as application messages.

See the Application Kit chapter of the Be Book for a description of
all of the application messages, and the Interface Kit chapter for a
description of all the interface messages.

System message dispatching

When a system message reaches a looper object (such as the application object or
a window object), that object handles, or dispatches, the message by automati-
cally invoking a virtual hook function. Such a function is declared virtual so that
your own derived classes can override it in order to reimplement it to match your
program’s specific needs. In that sense, you’re “hooking” your own code onto the
system code.

128 Chapter 4: Windows, Views, and Messages

Each system message has a corresponding hook function. For the three system
messages mentioned above (B_ABOUT_REQUESTED, B_KEY_DOWN, and B_MOUSE_
DOWN), those functions are AboutRequested(), KeyDown(), and MouseDown().
The application object itself handles a B_ABOUT_REQUESTED message by calling
the BApplication member function AboutRequested(). A window object, on
the other hand, passes a B_KEY_DOWN or B_MOUSE_DOWN message on to the partic-
ular view object to which the message pertains. This view object then invokes the
BView member function KeyDown() or MouseDown() to handle the message.

Types of hook functions

For some system messages, the hook function defined by the Be class takes care
of all the work suggested by the message. For instance, a click on a window’s
zoom button results in a B_ZOOM message being sent to the affected window. The
receiving of this message automatically brings about the execution of the BWindow
member function Zoom(). This hook function is fully implemented, meaning that
you need to add no code to your project in order to support a click in a win-
dow’s zoom button.

All hook functions are declared virtual, so your code can override even fully
implemented ones. Unless your application needs to perform some nonstandard
action in response to the message, though, there’s no need to do so.

For other system messages, the hook function is implemented in such a way that
the most common response to the message is handled. A program may override
this type of hook function and reimplement it in such a way that the new version
handles application-specific needs. This new application-defined version of the
hook function may also call the original Be-defined BView version of the routine
in order to incorporate the default actions of that BView version. An example of
this type of hook function is ScreenChanged(), which is invoked in response to
a B_SCREEN_CHANGED message. When the user changes the screen (perhaps by
altering the monitor resolution), the application may need to make special adjust-
ments to an open window. After doing that, the application-defined version of
ScreenChanged() should invoke the BView-defined version of this routine so
that the standard screen-changing code that’s been supplied by Be can execute
too.

Finally, for some system messages, the hook function implementation is left to the
application. If an application is to respond to user actions that generate messages
of types such as B_KEY_DOWN and B_MOUSE_DOWN, that application needs to over-
ride BView hook functions such as KeyDown() and MouseDown().

Messaging 129

Interface messages

A system message directed at the application object is an application message,
while a system message directed at a window object is an interface message.
Responding to user actions is of great importance to a user-friendly application, so
the remainder of this chapter is dedicated to illustrating how a project goes about
doing this. In particular, I’ll discuss the handling of two of the interface messages
(B_KEY_DOWN and B_MOUSE_DOWN). Summarized below are several of the inter-
face messages; refer to the Interface Kit chapter of the Be Book for a description
of each of the 18 message types.

B_KEY_DOWN
Goes to the active window in response to the user pressing a character key.
The recipient window invokes the BView hook function KeyDown() of the
affected view. The affected view is typically one that accepts text entry, such
as a view of the yet-to-be-discussed BTextControl or BTextView classes. An
example of handling a B_KEY_DOWN message is presented later in this chapter.

B_KEY_UP
Is sent to the active window when the user releases a pressed character key.
The recipient window invokes the BView hook function KeyUp() of the
affected view. Typically, a program responds to a B_KEY_DOWN message and
ignores the B_KEY_UP message that follows. In other words, the program
doesn’t override the BView hook function KeyUp().

B_MOUSE_DOWN
Is sent to the window over which the cursor was located at the time of the
mouse button click. The window that receives the message calls the BView
hook function MouseDown() of the view the cursor was over at the time of
the mouse button click.

B_MOUSE_UP
Reaches the window that was affected by a B_MOUSE_DOWN message when the
user releases a pressed mouse button. The MouseDown() hook function that
executes in response to a B_MOUSE_DOWN message often sufficiently handles a
mouse button click, so a B_MOUSE_UP message is often ignored by a pro-
gram. That is, the program doesn’t override the BView hook function
MouseUp().

B_MOUSE_MOVED
Is sent to a window when the user moves the cursor over the window. As the
user drags the mouse, repeated B_MOUSE_MOVED messages are issued by the
Application Server. As the cursor moves over one window to another, the win-
dow to which the messages are sent changes. When the mouse is moved over
the desktop rather than a window, a B_MOUSE_MOVED message is sent to the
Desktop window of the Tracker.

130 Chapter 4: Windows, Views, and Messages

Mouse Clicks and Views

When a window receives a B_MOUSE_DOWN message from the Application Server,
the window object (without help from you) determines which of its views should
respond. It is that view’s MouseDown() hook function that is then invoked.

The ViewsMouseMessages project includes a MouseDown() routine with the
MyHelloView class in order to make the program “mouse-click aware.” The
ViewsMouseMessages program displays a single window that holds two framed
MyHelloView views. Clicking the mouse while the cursor is over either view
results in the playing of the system beep.

The mechanism for responding to a mouse click has already been present in every
example project in this book, so there’s very little new code in the ViewsMouse-
Messages project. The ViewsMouseMessages program, and every other program
you’ve seen in this book, works as follows: when the user clicks the mouse but-
ton while the cursor is over a window, the Application Server sends a B_MOUSE_
DOWN message to the affected window, causing it to invoke the affected view’s
MouseDown() hook function. The MyHelloView class is derived from the BView
class, and the BView class defines its version of MouseDown() as an empty func-
tion. So unless the MyHelloView class overrides MouseDown(), it inherits this “do-
nothing” routine. In all previous examples, a mouse button click while the cursor
was over a view resulted in the execution of this empty routine—so effectively the
mouse button click was ignored. The ViewsMouseMessages project overrides
MouseDown() so that a mouse button click with the cursor over a view now
results in something happening. Here’s the latest version of the MyHelloView
class definition, with the addition of the MouseDown() declaration:

class MyHelloView : public BView {

 public:
 MyHelloView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
 virtual void MouseDown(BPoint point);
};

The one MouseDown() parameter is a BPoint that is passed to the routine by the
Application Server. This point parameter holds the location of the cursor at the
time the mouse button was clicked. The values of the point are in the view’s coor-
dinate system. For example, if the cursor was over the very top left corner of the
view at the time of the mouse click, the point’s coordinates would be close to (0.0,
0.0). In other words, both point.x and point.y would have a value close to 0.0.

To verify that the B_MOUSE_DOWN message has worked its way to the new version
of MouseDown(), the implementation of MouseDown() sounds the system beep:

Messaging 131

void MyHelloView::MouseDown(BPoint point)
{
 beep();
}

Recall that beep() is a global function that, like the snooze() routine covered
earlier in this chapter, can be called from any point in your project’s source code.

Key Presses and Views

In response to a B_MOUSE_DOWN message, a window object invokes the
MouseDown() function of the affected view. For the window object, determining
which view is involved is simple—it chooses whichever view object is under the
cursor at the time of the mouse button click. This same test isn’t made by the win-
dow in response to a B_KEY_DOWN message. That’s because the location of the
cursor when a key is pressed is generally insignificant. The scheme used to deter-
mine which view’s KeyDown() hook function to invoke involves a focus view.

Focus view

A program can make any view the focus view by invoking that view’s
MakeFocus() function. For a view that accepts typed input (such as BText-
Control or a BTextView view), the call is made implicitly when the user clicks in
the view to activate the insertion bar. Any view, however, can be made the focus
view by explicitly calling MakeFocus(). Here a click of the mouse button while
the cursor is over a view of type MyHelloView makes that view the focus view:

void MyHelloView::MouseDown(BPoint point)
{
 MakeFocus();
}

Now, when a key is pressed, the KeyDown() hook function of the last clicked-on
view of type MyHelloView will automatically execute.

Because a MyHelloView view doesn’t accept keyboard input, there
is no obvious reason to make a view of this type the focus view. We
haven’t worked with many view types, so the above example must
suffice here. If you’re more comfortable having a reason for making
a MyHelloView accept keyboard input, consider this rather con-
trived scenario. You want the user to click on a view of type
MyHelloView to make it active. Then you want the user to type any
character and have the view echo that character back—perhaps in a
large, bold font. Including the above MouseDown() routine in a
project suffices to make the view the focus view when clicked on.
Now a MyHelloView KeyDown() routine can be written to examine
the typed character, clear the view, and draw the typed character.

132 Chapter 4: Windows, Views, and Messages

KeyDown() example project

The ViewsKeyMessages project adds to the ViewsMouseMessages project to create
a program that responds to both mouse button clicks and key presses. Once again,
a mouse button click while the cursor is over a view results in the sounding of the
system beep. Additionally, ViewsKeyMessages beeps twice if the Return key is
pressed and three times if the 0 (zero) key is pressed.

To allow a MyHelloView view to respond to a press of a key, the BView hook
function KeyDown() needs to be overridden:

class MyHelloView : public BView {

 public:
 MyHelloView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
 virtual void MouseDown(BPoint point);
 virtual void KeyDown(const char *bytes, int32 numBytes);
};

The first KeyDown() parameter is an array that encodes the typed character along
with any modifier keys (such as the Shift key) that were down at the time of the
key press. The second parameter tells how many bytes are in the array that is the
first parameter. As with all hook functions, the values of these parameters are filled
in by the system and are available in your implementation of the hook function
should they be of use.

The KeyDown() routine responds to two key presses: the Return key and the 0
(zero) key. Pressing the Return key plays the system beep sound twice, while
pressing the 0 key plays the sound three times:

void MyHelloView::KeyDown(const char *bytes, int32 numBytes)
{
 bigtime_t microseconds = 1000000;

 switch (*bytes) {

 case B_RETURN:
 beep();
 snooze(microseconds);
 beep();
 break;

 case '0':
 beep();
 snooze(microseconds);
 beep();
 snooze(microseconds);
 beep();
 break;

Messaging 133

 default:
 break;
 }
}

There are a number of Be-defined constants you can test bytes against; B_RETURN
is one of them. The others are: B_BACKSPACE, B_LEFT_ARROW, B_INSERT, B_
ENTER, B_RIGHT_ARROW, B_DELETE, B_UP_ARROW, B_HOME, B_SPACE, B_DOWN_
ARROW, B_END, B_TAB, B_PAGE_UP, B_ESCAPE, B_FUNCTION_KEY, and B_PAGE_
DOWN. For a key representing an alphanumeric character, just place the character
between single quotes, as shown above for the 0 (zero) character.

Notice that calls to the global function snooze() appear between calls to the glo-
bal function beep(). The beep() routine executes in its own thread, which means
as soon as the function starts, control returns to the caller. If successive, uninter-
rupted calls are made to beep(), the multiple playing of the system beep will
seem like a single sound.

Only the focus view responds to a key press, so the ViewsKeyMessages program
needs to make one of its two views the focus view. I’ve elected to do this in the
MyHelloView MouseDown() routine. When the user clicks on a view, that view
becomes the focus view:

void MyHelloView::MouseDown(BPoint point)
{
 beep();

 MakeFocus();
}

When the user then presses a key, the resulting B_KEY_DOWN message is directed
at that view. Since the views are derived from the BView class, rather than a class
that accepts keyboard input, a typed character won’t appear in the view. But the
view’s KeyDown() routine will still be called.

134

Chapter 5

In this chapter:
• Colors
• Patterns
• The Drawing Pen
• Shapes5

Drawing 5.

When a Be application draws, it always draws in a view. That’s why the chapter
that deals with views precedes this chapter. In Chapter 4, Windows, Views, and
Messages, you saw that a BView-derived class overrides its inherited hook mem-
ber function Draw() so that it can define exactly what view objects should draw
in when they get updated. The example projects in this chapter contain classes
and member functions that remain unchanged, or changed very little, from previ-
ous example projects. What will be different is the content of the Draw() function.
The code that demonstrates the concepts of each drawing topic can usually be
added to the Draw() routine.

In Be programming, the colors and patterns that fill a shape aren’t defined explic-
itly for that shape. Instead, traits of the graphics environment of the view that
receives the drawing are first altered. In other words, many drawing characteris-
tics, such as color and font, are defined at the view level, so all subsequent draw-
ing can use the view settings. In this chapter, you’ll see how to define a color,
then set a view to draw in that color. You’ll see how the same is done for pat-
terns—whether using Be-defined patterns or your own application-defined ones.

After you learn how to manipulate the graphic characteristics of a view, it’s on to
the drawing of specific shapes. The point (represented by BPoint objects) is used
on its own, to define the end points of a line, and to define the vertices of more
sophisticated shapes (such as triangles or polygons). The rectangle (represented by
BRect objects) is used on its own and as the basis of more sophisticated shapes.
These shapes include round rectangles, ellipses, and regions. Round rectangles
and ellipses are closely related to BRect objects, and aren’t defined by their own
classes. Polygons and regions are more sophisticated shapes that make use of
points and rectangles, but are represented by their own class types (BPolygon and
BRegion). In this chapter, you’ll see how to outline and fill each of these different

Colors 135

shapes. Finally, I show how to combine any type and number of these various
shapes into a picture represented by a BPicture object.

Colors
The BeOS is capable of defining colors using any of a number of color spaces. A
color space is a scheme, or system, for representing colors as numbers. There are
several color space Be-defined constants, each containing a number that reflects
the number of bits used to represent a single color in a single pixel. For instance,
the B_COLOR_8_BIT color space devotes 8 bits to defining the color of a single
pixel. The more memory devoted to defining the color of a single pixel, the more
possible colors a pixel can display.

B_GRAY1
Each pixel in a drawing is either black (bit is on, or 1) or white (bit is off, or
0).

B_GRAY8
Each pixel in a drawing can be one of 256 shades of gray—from black (bit is
set to a value of 255) to white (bit is set to a value of 0).

B_CMAP8
Each pixel in a drawing can be one of 256 colors. A pixel value in the range
of 0 to 255 is used as an index into a color map. This system color map is
identical for all applications. That means that when two programs use the
same value to color a pixel, the same color will be displayed.

B_RGB15
Each pixel in a drawing is created from three separate color components: red,
green, and blue. Five out of a total of sixteen bits are devoted to defining each
color component. The sixteenth bit is ignored.

B_RGB32
Like the B_RGB15 color space, each pixel in a drawing is created from three
separate color components: red, green, and blue. In B_RGB32 space, how-
ever, eight bits are devoted to defining each color component. The remaining
eight bits are ignored.

B_RGBA32
Like the B_RGB32 color space, each pixel in a drawing is created from three
separate color components: red, green, and blue. Like B_RGB, eight bits are
used to define each of the three color components. In B_RGBA32 space, how-
ever, the remaining eight bits aren’t ignored—they’re devoted to defining an
alpha byte, which is used to specify a transparency level for a color.

136 Chapter 5: Drawing

RGB Color System

As listed above, the BeOS supports a number of color spaces. The RGB color
space is popular because it provides over sixteen million unique colors (the num-
ber of combinations using values in the range of 0 to 255 for each of the three
color components), and because it is a color system with which many program-
mers and end users are familiar with (it’s common to several operating systems).

The BeOS defines rgb_color as a struct with four fields:

typedef struct {
 uint8 red;
 uint8 green;
 uint8 blue;
 uint8 alpha;
} rgb_color

A variable of type rgb_color can be initialized at the time of declaration. The
order of the supplied values corresponds to the ordering of the struct defini-
tion. The following declares an rgb_color variable named redColor and assigns
the red and alpha fields a value of 255 and the other two fields a value of 0:

rgb_color redColor = {255, 0, 0, 255};

To add a hint of blue to the color defined by redColor, the third value could be
changed from 0 to, say, 50. Because the alpha component of a color isn’t sup-
ported at the time of this writing, the last value should be 255. Once supported, an
alpha value of 255 will represent a color that is completely opaque; an object of
that color will completely cover anything underneath it. An alpha field value of 0
will result in a color that is completely transparent—an effect you probably don’t
want. An rgb_color variable can be set to represent a new color at any time by
specifying new values for some or all of the three color components. Here an
rgb_color variable named blueColor is first declared, then assigned values:

rgb_color blueColor;

blueColor.red = 0;
blueColor.green = 0;
blueColor.blue = 255;
blueColor.alpha = 255;

While choosing values for the red, green, and blue components of a
color is easy if you want a primary color, the process isn’t com-
pletely intuitive for other colors. Quickly now, what values should
you use to generate chartreuse? To experiment with colors and their
RGB components, run the ColorControl program that’s discussed a
little later in this chapter. By the way, to create the pale, yellowish
green color that’s chartreuse, try values of about 200, 230, and 100
for the red, green, and blue components, respectively.

Colors 137

High and Low Colors

Like all graphics objects, an rgb_color variable doesn’t display any color in a
window on its own—it only sets up a color for later use. A view always keeps
track of two colors, dubbed the high and low colors. When you draw in the view,
you specify whether the current high color, the current low color, or a mix of the
two colors should be used.

Views and default colors

When a new view comes into existence, it sets a number of drawing characteris-
tics to default values. Included among these are:

• A high color of black

• A low color of white

• A background color of white

Additionally, when a BView drawing function is invoked, by default it uses the
view’s high color for the drawing. Together, these facts tell you that unless you
explicitly specify otherwise, drawing will be in black on a white background.

Setting the high and low colors

The BView member functions SetHighColor() and SetLowColor() alter the
current high and low colors of a view. Pass SetHighColor() an rgb_color and
that color becomes the new high color—and remains as such until the next call to
SetHighColor(). The SetLowColor() routine works the same way. This next
snippet sets a view’s high color to red and its low color to blue:

rgb_color redColor = {255, 0, 0, 255};
rgb_color blueColor = {0, 0, 255, 255};

SetHighColor(redColor);
SetLowColor(blueColor);

Drawing with the high and low colors

Passing an rgb_color structure to SetHighColor() or SetLowColor() estab-
lishes that color as the one to be used by a view when drawing. Now let’s see
how the high color is used to draw in color:

rgb_color redColor = {255, 0, 0, 255};
BRect aRect(10, 10, 110, 110);

SetHighColor(redColor);

FillRect(aRect, B_SOLID_HIGH);

138 Chapter 5: Drawing

The previous snippet declares redColor to be a variable of type rgb_color and
defines that variable to represent red. The snippet also declares a BRect variable
named aRect, and sets that variable to represent a rectangle with a width and
height of 100 pixels. The call to SetHighColor() sets the high color to red.
Finally, a call to the BView member function FillRect() fills the rectangle aRect
with the current high color (as specified by the Be-defined constant B_SOLID_
HIGH)—the color red.

Shape-drawing routines such as FillRect() are described in detail later in this
chapter. For now, a brief introduction will suffice. A shape is typically drawn by
first creating a shape object to define the shape, then invoking a BView member
function to draw it. That’s what the previous snippet does: it creates a rectangle
shape based on a BRect object, then calls the BView member function
FillRect() to draw the rectangle.

One of the parameters to a BView shape-drawing routine is a pattern. As you’ll see
ahead in the “Patterns” section of this chapter, a pattern is an 8-pixel-by-8-pixel
template that defines some combination of the current high color and low color.
This small template can be repeatedly “stamped” into an area of any size to fill that
area with the pattern. Patterns are everywhere these days: desktop backgrounds,
web page backgrounds, and so on. You can create your own patterns, or use one
of the three Be-defined patterns. Each of the Be-defined patterns is represented by
a constant:

• B_SOLID_HIGH is a solid fill of the current high color.

• B_SOLID_LOW is a solid fill of the current low color.

• B_MIXED_COLORS is a checkerboard pattern of alternating current high color
and low color pixels (providing a dithered effect—what looks like a single
color blended from the two colors).

A view’s default high color is black. So before a view calls SetHighColor(), the
use of B_SOLID_HIGH results in a solid black pattern being used. The above snip-
pet invokes SetHighColor() to set the current high color to red, so subsequent
uses of B_SOLID_HIGH for this one view result in a solid red pattern being used.

Determining the current high and low colors

You can find out the current high or low color for a view at any time by invoking
the BView member functions HighColor() or LowColor(). Each routine returns
a value of type rgb_color. This snippet demonstrates the calls:

rgb_color currentHighColor;
rgb_color currentLowColor;

currentHighColor = HighColor();
currentLowColor = LowColor();

Colors 139

The default high color is black, so if you invoke HighColor() before using
SetHighColor(), an rgb_color with red, green, and blue field values of 0 will
be returned to the program. The default low color is white, so a call to
LowColor() before a call to SetLowColor() will result in the return of an rgb_
color with red, green, and blue field values of 255. Because the alpha field of
the high and low colors is ignored at the time of this writing, the alpha field will
be 255 in both cases.

RGB, low, and high color example project

The RGBColor project is used to build a program that displays a window like the
one shown in Figure 5-1. Given the nature of this topic, you can well imagine that
the window isn’t just as it appears in this figure. Instead a shade of each being a
shade of gray, the three rectangles in the window are, from left to right, red, blue,
and a red-blue checkerboard. Because of the high resolution typical of today’s
monitors, the contents of the rightmost rectangle dither to a solid purple rather
than appearing to the eye as alternating red and blue pixels.

Chapter 4 included the TwoViewClasses project—a project that introduced a new
view class named MyDrawView. That class definition was almost identical to the
original MyHelloView. This chapter’s RGBColor project and all remaining projects
in this chapter display a single window that holds a single MyDrawView view, and
no MyHelloView. So the MyHelloView.cpp file is omitted from these projects, and
the data member meant to keep track of a MyHelloView in the MyHelloWindow
class (reproduced below) is also omitted:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();

 private:
 MyDrawView *fMyDrawView;
};

Figure 5-1. The window that results from running the RGBColor program

140 Chapter 5: Drawing

Creating a new MyHelloWindow object now entails creating just a single
MyDrawView view that fills the window, then attaching the view to the window:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyDrawView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyDrawView);

 Show();
}

Drawing in a view takes place automatically when the system calls the view’s
Draw() routine. That function is the code I play with in order to try out drawing
ideas. Here’s how the RGBColor project implements the MyDrawView version of
Draw():

void MyDrawView::Draw(BRect)
{
 BRect aRect;
 rgb_color redColor = {255, 0, 0, 255};
 rgb_color blueColor;

 blueColor.red = 0;
 blueColor.green = 0;
 blueColor.blue = 255;
 blueColor.alpha = 255;

 SetHighColor(redColor);
 SetLowColor(blueColor);

 aRect.Set(10, 10, 110, 110);
 FillRect(aRect, B_SOLID_HIGH);

 aRect.Set(120, 10, 220, 110);
 FillRect(aRect, B_SOLID_LOW);

 aRect.Set(230, 10, 330, 110);
 FillRect(aRect, B_MIXED_COLORS);
}

The previous routine demonstrates two methods of assigning an rgb_color vari-
able a color value. After that, the SetHighColor() and SetLowColor() func-
tions set the MyDrawView high color and low color to red and blue, respectively.
Then in turn each of the three rectangles is set up, then filled.

The View Color (Background)

To color a shape, the program often refers to the B_SOLID_HIGH constant. As you
just saw in the previous example project, the B_SOLID_LOW and B_MIXED_COLORS

Colors 141

constants can also be used to include the view’s current low color in the drawing.
By now it should be apparent that neither the high nor low color implicitly has
anything to do with a view’s background color.

Setting a view’s background color

By default, a new view has a background color of white. This background color
can be set to any RGB color by invoking the BView member function
SetViewColor(). Here a view’s background color is being set to purple:

rgb_color purpleColor = {255, 0, 255, 255};
SetViewColor(purpleColor);

Calling SetViewColor() changes the background color of a view without affect-
ing either the high color or the low color. Consider a view with a current high
color of blue, a current low color of yellow, and a background color set to pur-
ple. Calling a BView fill routine with a pattern argument of B_SOLID_HIGH draws
a blue shape. An argument of B_SOLID_LOW draws a yellow shape. Finally, an
argument of B_MIXED_COLORS draws a green shape. All shapes are drawn against
the view’s purple background.

View color example project

The ViewColor program displays a window that looks identical to that displayed
by the RGBColor example, except for one feature. Both programs display a win-
dow with a red, blue, and purple rectangle in it, but the ViewColor window back-
ground is pink rather than white. This trick is performed by adding just a few lines
of code to the AttachedToWindow() routine defined in the MyDrawView.cpp file
in the RGBColor project. Here an rgb_color variable is set up to define the color
pink, and that variable is used as the argument to a call to SetViewColor().
Here’s the new version of the MyDrawView member function
AttachedToWindow():

void MyDrawView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);

 rgb_color pinkColor = {255, 160, 220, 255};
 SetViewColor(pinkColor);
}

Color Control View

The RGB components of any given color won’t be known by a program’s user.
There are exceptions, of course—graphics artists involved in electronic media or

142 Chapter 5: Drawing

electronic publications may have a working knowledge of how RGB values corre-
spond to colors. Those exceptions aside, if your program allows users to select
their own colors, your program should provide a very user-friendly means for
them to accomplish this task. The BColorControl class does just that.

Color levels and the BColorControl object

The BColorControl class is derived from the BControl class, which itself is
derived from the BView class. So a BColorControl object is a type of view. Your
program creates a BColorControl object in order to allow a user to select an
RGB color without the user knowing anything about the RGB color system or RGB
values.

What the BColorControl object displays to the user depends on the number of
colors the user’s monitor is currently displaying. The user can set that parameter
by choosing Screen from the preferences menu in the Deskbar. Coincidentally, the
Screen preferences window (which has been revamped and turned into the Back-
ground preferences application) itself holds a BColorControl object. So you can
see how the monitor’s color depth is set and take a look at a BColorControl
object by selecting the Screen preferences or by simply looking at Figure 5-2.

The Screen preferences window holds a number of objects representing BView-
derived classes. Among them is a pop-up menu titled Colors. In Figure 5-2, you
see that I have my monitor set to devote 8 bits of graphics memory to each pixel,
so my monitor can display up to 256 colors. The Screen preferences window lets
me choose one of the 256 system colors to be used as my desktop color. This is
done by clicking on one of the 256 small colored squares. This matrix, or block of
squares, is a BColorControl object.

Figure 5-2. The Screen preferences program set to display 8-bit color

Colors 143

Choosing 32-Bits/Pixel from the Colors pop-up menu in the Screen preferences
window sets a monitor to display any of millions of colors. As shown in
Figure 5-3, doing so also changes the look of the BColorControl object. Now a
color is selected by clicking on the red, green, and blue ramps, or bands, of color
along the bottom of the Screen preferences window. Unbeknownst to the user,
doing this sets up an RGB color. The Screen preferences program combines the
user’s three color choices and uses the resulting RGB value as the desktop color.

Creating a BColorControl object

The Screen preferences window serves as a good example of how a
BColorControl object can help the user. To use the class in your own program,
declare a BColorControl object and the variables that will be used as parame-
ters to the BColorControl constructor. Then create the new object using new and
the BColorControl constructor:

BColorControl *aColorControl;
BPoint leftTop(20.0, 50.0);
color_control_layout matrix = B_CELLS_16x16;
long cellSide = 16;

aColorControl = new BColorControl(leftTop, matrix, cellSide, "ColorControl");

AddChild(aColorControl);

The first BColorControl constructor parameter, leftTop, indicates where the top
left corner of the color control should appear. The color control will be placed in
a view (by calling the AddChild() function of the host view, as shown above), so
you should set BPoint’s coordinates relative to the view’s borders.

The second parameter, matrix, is of the Be-defined datatype color_control_
layout. When the user has the monitor set to 8 bits per pixel, the 256 system col-
ors are displayed in a matrix. This parameter specifies how these squares should

Figure 5-3. The Screen preferences program set to display 32-bit color

144 Chapter 5: Drawing

be arranged. Use one of five Be-defined constants here: B_CELLS_4x64, B_
CELLS_8x32, B_CELLS_16x16, B_CELLS_32x8, or B_CELLS_64x4. The two num-
bers in each constant name represent the number of columns and rows, respec-
tively, that the colored squares are placed in. For example, B_CELLS_32x8 dis-
plays the 256 colors in eight rows with 32 colored squares in each row.

The third BColorControl constructor parameter, cellSide, determines the pixel
size of each colored square in the matrix. A value of 10, for instance, results in 256
squares that are each 10 pixels by 10 pixels in size.

The fourth parameter provides a name for the BColorControl object. Like any
view, a BColorControl object has a name that can be used to find the view. The
name can be supplied using a string (as shown in the previous snippet) or by
passing in a constant variable that was defined as a const char * (as in const
char *name = "ColorControl";).

Note that the overall size of the BColorControl object isn’t directly specified in
the constructor. The size is calculated by the constructor, and depends on the val-
ues supplied in the second and third parameters. The matrix parameter specifies
the shape of the block of colors, while the cellSide value indirectly determines
the overall size. A matrix with 8 rows of cells that are each 10 pixels high will
have a height of 80 pixels, for instance.

I’ve discussed the BColorControl constructor parameters as if they will be used
with 8-bit pixels. For the values used in the previous example, the resulting color
control looks like the one displayed in the window in Figure 5-4. If the user
instead has the monitor set to 32 bits for each pixel, the same arguments are used
in the display of four bands, three of which the user clicks on in order to create a
single color. The top gray band represents the alpha, or color transparency level,
component. As of this writing, the alpha component is unimplemented, but it
should be implemented by the time you read this. Instead of creating a matrix of
color squares, the arguments are now used to determine the shape and overall
size the four bands occupy. Figure 5-5 shows the color control that results from
executing the previous snippet when the monitor is set to 32 bits per pixel.

The user can set the monitor to the desired bits-per-pixel level, so
your program can’t count on being used for a matrix or bands. In
Figure 5-5, you see that the color bands are very broad—that’s the
result of specifying a 16-by-16 matrix (B_CELLS_16x16). To display
longer, narrower color bands, choose a different Be-defined con-
stant for the BColorControl constructor matrix argument (such as
B_CELLS_64x4). Regardless of the values you choose for the
matrix and cellSize parameters, test the resulting color control
under both monitor settings to verify that the displayed control fits
well in the window that displays it.

Colors 145

Using a color control

When a window displays a color control, the user selects a color by clicking on its
cell (if the user’s monitor is set to 8 bits per pixel) or by clicking on a color inten-
sity in each of the three color component bands (if the user’s monitor is set to 32
bits per pixel). In either case, the BColorControl object always keeps track of
the currently selected color. Your program can obtain this color at any time via a
call to the BColorControl member function ValueAsColor(). Obviously
enough, a call to this routine returns the value of the color control object in the
form of an RGB color. In this next snippet, the user’s current color choice is
returned and stored in an rgb_color variable named userColorChoice:

rgb_color userColorChoice;

userColorChoice = aColorControl->ValueAsColor();

What your program does with the returned color is application-specific. Just bear
in mind that this value can be used the same way any rgb_color is used. You
know about the SetHighColor() routine that sets a view’s high color, and you’ve
seen how to fill a rectangle with the current high color by calling the BView mem-
ber function FillRect(), so an example that carries on with the previous snip-
pet’s userColorChoice RGB color will be easily understandable:

BRect aRect(40.0, 50.0, 400.0, 55.0);

SetHighColor(userColorChoice);

FillRect(aRect, B_SOLID_HIGH);

The previous snippet creates a rectangle in the shape of a long horizontal bar, sets
the high color to whatever color the user has the color control currently set at,
then fills the rectangle with that color.

ColorControl example project

If you set your monitor to use 8 bits per pixel (using the Screen preferences util-
ity), running this chapter’s ColorControl example program results in a window like
the one shown in Figure 5-4. If you instead have your monitor set to use 32 bits
per pixel, running the same program displays a window like that shown in
Figure 5-5.

Regardless of your monitor’s pixel setting, the ColorControl program displays three
text boxes to the right of the color matrix or color bands. These text boxes are dis-
played automatically by the BColorControl object, and the area they occupy
constitutes a part of the total area occupied by the control. If you click on a color
cell or a color band, the numbers in these boxes will change to reflect the appro-
priate RGB values for the color you’ve selected. If you click in a text box (or use
the Tab key to move to a text box) and type in a value between 0 and 255, the

146 Chapter 5: Drawing

Figure 5-4. The ColorControl program’s window that results from running at 8-bit color

Figure 5-5. The ColorControl program’s window that results from running at 32-bit color

Colors 147

color display will update itself to display the color that best matches the value
you’ve entered. These actions are all automatic, and require no coding effort on
your part. The reason this handy feature works is that the BControl class over-
rides the BView class member function KeyDown(), and in turn the
BColorControl class overrides the BControl version of KeyDown(). The
BColorControl version of the routine sees to it that the text box values reflect
the displayed color.

If you move the cursor out of the color control area (keep in mind that this area
includes the text boxes), then click the mouse button, a long, narrow bar is drawn
along the bottom of the window—as shown in Figures 5-4 and 5-5. The color of
this bar will match whatever color you have currently selected in the color con-
trol. The selection of this color and the drawing of the bar are handled by the
MyDrawView version of the MouseDown() routine. Besides overriding the Bview
hook function MouseDown(), this project’s version of the MyDrawView class adds a
BColorControl data member. The color control data member will be used to
keep track of the control. Here’s how the ColorControl project declares the
MyDrawView class:

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
 virtual void MouseDown(BPoint point);

 private:
 BColorControl *fColorControl;
};

The MyHelloApplication class and MyHelloWindow class are almost identical to
versions found in previous examples. The MyHelloApplication constructor
defines the size of a window and creates a single MyHelloWindow, and the
MyHelloWindow defines a single MyDrawView whose size is the same as the win-
dow it resides in.

The MyDrawView constructor, which in other projects has been empty, sets up and
creates a color control. The control object is added to the newly created
MyDrawView object as a child:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BPoint leftTop(20.0, 50.0);
 color_control_layout matrix = B_CELLS_16x16;
 long cellSide = 16;

 fColorControl = new BColorControl(leftTop, matrix, cellSide,

148 Chapter 5: Drawing

 "ColorControl");
 AddChild(fColorControl);
}

In the MyDrawView constructor, you see that the control will have its top left cor-
ner start 20 pixels from the left and 50 pixels from the top of the MyDrawView
view that the control appears in. Starting down 50 pixels from the top of the view
leaves room for the two lines of instructional text that are displayed in the win-
dow (refer back to Figure 5-4 or 5-5). Those lines are drawn each time the system
has to update the view they appear in:

void MyDrawView::Draw(BRect)
{
 MovePenTo(BPoint(20.0, 20.0));
 DrawString("Choose a color below, then move the cursor");
 MovePenTo(BPoint(20.0, 35.0));
 DrawString("outside of the color control and click the mouse button");
}

When the user clicks in the MyDrawView view, the MouseDown() routine that the
MyDrawView class overrides is automatically invoked:

void MyDrawView::MouseDown(BPoint point)
{
 BRect aRect(20.0, 330.0, 350.0, 340.0);
 rgb_color userColorChoice;

 userColorChoice = fColorControl->ValueAsColor();

 SetHighColor(userColorChoice);

 FillRect(aRect, B_SOLID_HIGH);
}

MouseDown() creates the long, thin rectangle that appears along the bottom of the
view when the user clicks the mouse button. Before this function draws the rect-
angle with a call to FillRect(), a ValueAsColor() call obtains the color cur-
rently selected in the view’s color control. A call to SetHighColor() makes the
user-selected color the one used in function calls that include B_SOLID_HIGH as a
parameter.

Improving the ColorControl example project

For brevity, the ColorControl example sets the high color and fills in the colored
rectangle in the MouseDown() routine. Typically, drawing takes place only in a
view’s Draw() function. One way to accomplish that would be to move the code
currently in MouseDown() to Draw():

void MyDrawView::Draw(BRect)
{
 BRect aRect(20.0, 330.0, 350.0, 340.0);

Colors 149

 rgb_color userColorChoice;

 MovePenTo(BPoint(20.0, 20.0));
 DrawString("Choose a color below, then move the cursor");
 MovePenTo(BPoint(20.0, 35.0));
 DrawString("outside of the color control and click the mouse button");

 userColorChoice = fColorControl->ValueAsColor();
 SetHighColor(userColorChoice);
 FillRect(aRect, B_SOLID_HIGH);
}

The body of MouseDown() could then consist of a single line of code: a call to the
BView function Invalidate(). Then, when the user clicks the mouse in the
MyDrawView view, MouseDown() makes the system aware of the fact that the view
needs updating, and the system invokes Draw():

void MyDrawView::MouseDown(BPoint point)
{
 Invalidate();
}

One further improvement to the ColorControl example program would be to pre-
serve the current state of the view before changing its high color. As implemented
(here and in the previous section), the text the program draws is drawn in black
the first time the Draw() function executes. Subsequent calls will update any pre-
viously obscured text (as in the case when an overlapping window is moved off
the ColorControl program’s window) in whatever color was selected by the user.
That is, the program’s call to SetHighColor() affects not only the long, narrow
color rectangle at the bottom of the program’s window, but also text drawn with
calls to DrawString(). To remedy this, preserve the state of the high color by
invoking the BView function HighColor() to get the current high color before
changing it. After calling SetHighColor() and FillRect(), use the rgb_color
value returned by HighColor() to reset the high color to its state prior to the use
of the user-selected color. Here’s how Draw() now looks:

void MyDrawView::Draw(BRect)
{
 BRect aRect(20.0, 330.0, 350.0, 340.0);
 rgb_color userColorChoice;
 rgb_color origHighColor;

 MovePenTo(BPoint(20.0, 20.0));
 DrawString("Choose a color below, then move the cursor");
 MovePenTo(BPoint(20.0, 35.0));
 DrawString("outside of the color control and click the mouse button");

 origHighColor = HighColor();

 userColorChoice = fColorControl->ValueAsColor();
 SetHighColor(userColorChoice);

150 Chapter 5: Drawing

 FillRect(aRect, B_SOLID_HIGH);

 SetHighColor(origHighColor);
}

Patterns
A pattern is an 8-pixel-by-8-pixel area. Each of the 64 pixels in this area has the
color of either the current high or current low color. A pattern can be one solid
color (by designating that all pixels in the pattern be only the current high color or
only the current low color), or it can be any arrangement of the two colors, as in a
checkerboard, stripes, and so forth. Regardless of the arrangement of the pixels
that make up the pattern, it can be used to fill an area of any size. And regardless
of the size or shape of an area, once a pattern is defined it can be easily “poured”
into this area to give the entire area the look of the pattern.

Be-Defined Patterns

You’ve already encountered three patterns—the Be-defined constants B_SOLID_
HIGH, B_SOLID_LOW, B_MIXED_COLORS each specify a specific arrangement of col-
ors in an 8-pixel-by-8-pixel area. Here the B_MIXED_COLORS pattern is used to fill
a rectangle with a checkerboard pattern made up of alternating current high and
current low colors:

BRect aRect(20.0, 20.0, 300.0, 300.0);

FillRect(aRect, B_MIXED_COLORS);

The BView class defines a number of stroke and fill member functions. Each
stroke function (such as StrokeRect() and StrokePolygon()) outlines a shape
using a specified pattern. Patterns have the greatest effect on the look of a shape
outline when the outline has a thickness greater than one pixel (setting the thick-
ness at which lines are drawn is covered ahead in the “The Drawing Pen” sec-
tion). Each fill function (such as FillRect() and FillPolygon()) fills a shape
using a specified pattern. This may not be entirely obvious when looking at some
source code snippets because these drawing routines make the pattern parameter
optional. When the pattern parameter is skipped, the function uses the B_SOLID_
HIGH pattern by default. So both of the following calls to FillRect() produce a
rectangle filled with a solid pattern in the current high color:

BRect rect1(100.0, 100.0, 150.0, 150.0);
BRect rect2(150.0, 150.0, 200.0, 200.0);

FillRect(rect1, B_SOLID_HIGH);
FillRect(rect2);

Patterns 151

Earlier in this chapter, the example project RGBColor demonstrated the use of the
B_SOLID_HIGH, B_SOLID_LOW, and B_MIXED_COLORS constants by using these
constants in the filling of three rectangles (see Figure 5-1). After setting the high
color to red and the low color to blue, the rectangle that was filled using the
B_MIXED_COLORS constant appeared to be purple. I say “appeared to be purple”
because, in fact, none of the pixels in the rectangle are purple. Instead, each is
either red or blue. Because the pixels alternate between these two colors, and
because pixel density is high on a typical monitor, the resulting rectangle appears
to the eye to be solid purple. Figure 5-6 illustrates this by showing the RGBColor
program’s window and the window of the pixel-viewing utility program Magnify.
The Magnify program (which is a Be-supplied application that was placed on your
machine during installation of the BeOS) shows an enlarged view of the pixels
surrounding the cursor. In Figure 5-6, the cursor is over a part of the purple rect-
angle in the RGBColor window, and the pixels are displayed in the Magnify win-
dow.

Application-Defined Patterns

The three Be-defined patterns come in handy, but they don’t exploit the real
power of patterns. Your project can define a pattern that carries out precisely your
idea of what a shape should be filled with.

Figure 5-6. Using the Magnify program to view the B_MIXED_COLORS pattern

152 Chapter 5: Drawing

Bit definition of a pattern

A pattern designates which of the 64 bits (8 rows of 8 bits) in an 8-pixel-by-8-pixel
area display the current high color and which display the current low color. Thus
the specific colors displayed by the pattern aren’t designated by the pattern.
Instead, a pattern definition marks each of its 64 bits as either a 1 to display the
high color or a 0 to display the low color. The colors themselves come from the
high and low colors at the time the pattern is used in drawing.

A pattern is specified by listing the hexadecimal values of the eight bits that make
up each row of the pattern. Consider the pattern shown in Figure 5-7. Here I show
the 8-by-8 grid for a pattern that produces a diagonal stripe. You can do the same
using a pencil and graph paper. Each cell represents one pixel, with a filled-in cell
considered on, or 1, and an untouched cell considered off, or 0. Since a pattern
defines only on and off, not color, this technique works fine regardless of the col-
ors to be used when drawing with the pattern.

The left side of Figure 5-7 shows the binary representation of each row in the pat-
tern, with a row chunked into groups of four bits. The right side of the figure
shows the corresponding hexadecimal values for each row. Looking at the top
row, from left to right, the pixels are on/on/off/off, or binary 1100. The second set
of four pixels in the top row has the same value. A binary value of 1100 is hexa-
decimal c, so the binary pair translates to the hexadecimal pair cc. The hexadeci-
mal values for each remaining row are determined in the same manner. If you’re
proficient at working with hexadecimal values, you can skip the intermediate
binary step and write the hexadecimal value for each row by simply looking at the
pixels in groups of four.

Row by row, the hexadecimal values for the pattern in Figure 5-7 are: cc, 66, 33,
99, cc, 66, 33, 99. Using the convention of preceding a hexadecimal value with 0x,
the pattern specification becomes: 0xcc, 0x66, 0x33, 0x99, 0xcc, 0x66, 0x33, 0x99.

Figure 5-7. The binary and hexadecimal representations of a pattern

Patterns 153

The pattern datatype

Using the previous method to define a pattern isn’t just an exercise in your knowl-
edge of hexadecimal numbers, of course! Instead, you’ll use a pattern’s eight hexa-
decimal pairs in assigning a pattern variable. Here’s how Be defines the
pattern datatype:

typedef struct {
 uchar data[8];
} pattern;

Each of the eight elements in the pattern array is one byte in size, so each can
hold a single unsigned value in the range of 0 to 255. Each of the hexadecimal
pairs in each of the eight rows in a pattern falls into this range (0x00 = 0, 0xff =
255). To create a pattern variable, determine the hexadecimal pairs for the pat-
tern (as shown above) and assign the variable those values. Here I’m doing that
for the pattern I designed back in Figure 5-7:

pattern stripePattern = {0xcc, 0x66, 0x33, 0x99, 0xcc, 0x66, 0x33, 0x99};

This is also how Be defines its three built-in patterns. The B_SOLID_HIGH pattern
is one that has all its bits set to 1, or on; the B_SOLID_LOW pattern has all its bits
set to 0, or off; and the B_MIXED_COLORS pattern has its bits set to alternate
between 1 and 0:

const pattern B_SOLID_HIGH = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
const pattern B_SOLID_LOW = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}
const pattern B_MIXED_COLORS = {0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55}

Using a pattern variable

Once initialized, a variable of type pattern is used just as one of the Be-defined
pattern constants—pass the variable as an argument to any routine that requires a
pattern as a parameter. The following snippet defines a pattern variable and two
rectangle variables. The code then fills one rectangle with a solid color and the
other with diagonal stripes:

pattern stripePattern = {0xcc, 0x66, 0x33, 0x99, 0xcc, 0x66, 0x33, 0x99};
BRect solidRect(10.0, 10.0, 110.0, 110.0);
BRect stripedRect(200.0, 10.0, 210.0, 110.0);

FillRect(solidRect, B_SOLID_HIGH);
FillRect(stripedRect, stripePattern);

Because the previous snippet doesn’t include any code that hints at the current
state of the high and low colors, you can’t infer what colors will be in the result-
ing rectangles—you know only that one will have a solid fill while the other will
have diagonal stripes running through it.

154 Chapter 5: Drawing

Pattern example project

The Pattern project builds a program that displays a window with a single rectan-
gle drawn in it. The rectangle is filled with the diagonal stripe pattern that was
introduced on the preceding pages. Figure 5-8 shows the Pattern program’s win-
dow. Also shown is the Magnify program’s window as it displays an enlarged view
of some of the pixels in the Pattern program’s filled rectangle.

As is the case for many of this chapter’s remaining examples, the Pattern project
was created by starting with a recent project (such as the RGBColor project) and
altering the code in just one of the routines—the Draw() member function of the
MyDrawView class. Here’s how the new version of that routine looks:

void MyDrawView::Draw(BRect)
{
 BRect aRect;
 pattern stripePattern = {0xcc, 0x66, 0x33, 0x99, 0xcc, 0x66, 0x33, 0x99};

 aRect.Set(10.0, 10.0, 110.0, 110.0);
 FillRect(aRect, stripePattern);
}

You can experiment with the Pattern project by adding color to the rectangle. Pre-
cede the call to FillRect() with a call to SetHighColor(), SetLowColor(), or
both. Changing the current high color will change the color of what are presently

Figure 5-8. Using the Magnify program to view the application-defined pattern

The Drawing Pen 155

the black stripes, while changing the current low color will change the color of
what are presently the white stripes.

The Drawing Pen
Whenever drawing takes place, the pen is at work. The pen is a way to summa-
rize and express two properties of a view’s drawing environment. When drawing
starts, it starts at some specific location in a view. When line drawing takes place,
the line has some specific thickness to it. These traits are stored in a view and can
be altered by invoking BView member functions. In keeping with the analogy of
drawing with a pen, the names of these routines include the word “pen.”

Pen Location

The location of the rectangle drawn by Fillrect() has been previously estab-
lished during the setting up of the rectangle:

BRect aRect(10.0, 10.0, 110.0, 110.0);

FillRect(aRect, B_SOLID_HIGH);

For the drawing of text and lines, this isn’t the case. Typically, you’ll move the pen
to the location where drawing is to start, then draw.

Moving the pen

When it’s said that the pen is moved, what’s actually taking place is that a call sets
the starting location for subsequent drawing. Moving the pen doesn’t have any vis-
ible effect—nothing gets drawn. To move the pen, invoke the view’s
MovePenTo() or MovePenBy() function.

The MovePenTo() function accepts either a single BPoint argument or a pair of
floating-point arguments. In either case, the result is that the arguments specify the
coordinate at which the next act of drawing starts. The first argument to
MovePenTo() is the horizontal coordinate to move to, while the second argument
is the vertical coordinate. The movement is relative to the view’s origin. Each of
the following four calls to MovePenTo() has the same result—drawing will be set
to start at pixel (30.0, 40.0) in the view’s system coordinate:

BPoint aPoint(30.0, 40.0);
float x = 30.0;
float y = 40.0;

MovePenTo(aPoint);
MovePenTo(BPoint(30.0, 40.0));
MovePenTo(30.0, 40.0);
MovePenTo(x, y);

156 Chapter 5: Drawing

Like MovePenTo(), the MovePenBy() function moves the starting location for
drawing. MovePenTo() moves the pen relative to the view’s origin. MovePenBy()
moves the pen relative to its current location in the view. Consider this snippet:

MovePenTo(30.0, 40.0);
MovePenBy(70.0, 10.0);

The call to MovePenTo() moves the pen to the location 30 pixels from the left of
the view and 40 pixels from the top of the view. That places the pen at the point
(30.0, 40.0). The call to MovePenBy() uses this current location as the reference
and moves the pen 70 pixels to the left and 10 pixels down. The result is that, rel-
ative to the view’s origin, the pen is at the point (100.0, 50.0).

Negative values for MovePenBy() move the pen “backwards” in the view. A nega-
tive horizontal argument moves the pen to the left, while a negative vertical argu-
ment moves the pen up. Because MovePenTo() specifies a particular coordinate
to end up at rather than a direction to move in, negative values shouldn't be
passed as the arguments of this routine.

MovePen example project

As shown in Figure 5-9, the MovePen project results in a program that displays a
window with three characters written to it. I’ve added coordinate information to
the figure—the arrows and values aren’t actually displayed in the window.

Where the characters “A,” “B,” and “C” get drawn in the window depends on calls
to the MovePenTo() and MovePenBy() functions. To get a good feel for working
with a view’s coordinate system, edit the arguments to the existing function calls in
the Draw() routine, or add additional calls to MovePenTo() and MovePenBy():

void MyDrawView::Draw(BRect)
{

Figure 5-9. The window that results from running the MovePen program

60.0

80.0 A 110.0

200.0 B C100.0

The Drawing Pen 157

 MovePenTo(BPoint(80.0, 60.0));
 DrawString("A");

 MovePenTo(200.0, 110.0);
 DrawString("B");

 MovePenBy(100.0, 0.0);
 DrawString("C");
}

Pen Size

The pen is used to draw shape outlines. Chapter 4 introduced the BView member
function StrokeRect(), which draws the outline of a rectangle. Here a 100-pixel-
by-100-pixel rectangle is framed in a view:

BRect aRect(10.0, 10.0, 110.0, 110.0);

StrokeRect(aRect);

As you’ll see later in this chapter, there are a number of BView StrokeXxx()
member functions, each of which outlines a particular shape. All of these func-
tions are affected by the current size of the pen.

Setting the pen size

By default, the pen can be thought of as having a tip that is the size of a single
pixel. Thus, drawing with the pen produces a line with a thickness of one pixel.
You can change the size or thickness of the pen at any time by invoking the
BView member function SetPenSize(). This routine accepts a single argument,
the new pixel thickness for the pen. In this next snippet, the same rectangle that
was outlined in the previous snippet is given a frame, or border, three pixels thick.
The lines you specify to be drawn are in the center of the pixels in a thick pen.

BRect aRect(10.0, 10.0, 110.0, 110.0);

SetPenSize(3.0);
StrokeRect(aRect);

Setting the pen size for a view affects all subsequent calls to StrokeXxx() func-
tions. After changing the pen size and invoking a StrokeXxx() function, you may
want to reset the pen size to a thickness of a single pixel:

SetPenSize(3.0);
StrokeRect(aRect);
SetPenSize(1.0);

Getting the pen size

The best process to use when altering the pen size is to obtain and save the cur-
rent pen size, change it, perform the desired drawing using the new pen size, then

158 Chapter 5: Drawing

restore the pen to the saved size. The BView member function PenSize() allows
you to do that. When invoked, PenSize() returns a float that holds the current
thickness of the pen. This next snippet provides an example of the use of
PenSize():

float savedPenSize;

savedPenSize = PenSize();
SetPenSize(3.0);
StrokeRect(aRect);
SetPenSize(savedPenSize);

PenSize example project

The PenSize project displays a window that holds six rectangles. As shown in
Figure 5-10, the thickness of the outline of each rectangle differs.

As is becoming a habit, the Draw() function of the MyDrawView class does the
example’s work. The function begins by defining and setting six rectangles. Each
rectangle has a width of 40 pixels and a height of 80 pixels. The outline thickness
of each rectangle differs due to the call to SetPenSize() that precedes each call
to StrokeRect():

void MyDrawView::Draw(BRect)
{
 BRect rect1(20.0, 20.0, 60.0, 100.0);
 BRect rect2(80.0, 20.0, 120.0, 100.0);
 BRect rect3(140.0, 20.0, 180.0, 100.0);
 BRect rect5(200.0, 20.0, 240.0, 100.0);
 BRect rect8(260.0, 20.0, 300.0, 100.0);
 BRect rect12(320.0, 20.0, 360.0, 100.0);

 SetPenSize(1.0);
 StrokeRect(rect1);

 SetPenSize(2.0);
 StrokeRect(rect2);

 SetPenSize(3.0);
 StrokeRect(rect3);

Figure 5-10. The window that results from running the PenSize program

Shapes 159

 SetPenSize(5.0);
 StrokeRect(rect5);

 SetPenSize(8.0);
 StrokeRect(rect8);

 SetPenSize(12.0);
 StrokeRect(rect12);

Shapes
Be claims that the BeOS is an operating system for the graphics community. So it’s
hoped that the BeOS makes it easy for programmers to support the drawing of
both simple and complex shapes. And, of course, it does.

Points and Lines

Drawing a line or lines is drawing at its most basic level. Points are used in speci-
fying where a line should be drawn within a view.

The BPoint class

A point is represented by a BPoint object. The BPoint object consists of two
floating point values, one denoting an x or horizontal coordinate and the other
defining a y or vertical coordinate. On a monitor, this coordinate pair matches one
particular pixel.

A BPoint object can have values assigned to its coordinate pair members either at
the time of declaration or anytime thereafter. At declaration, one of the BPoint
constructors can be used to take care of the task of assigning values to the BPoint
members:

BPoint aPoint(40.0, 70.0);

To assign coordinates after the object’s declaration, either use the BPoint mem-
ber function Set() or assign values directly to the x and y data members:

BPoint point1;
BPoint point2;

point1.Set(100.0, 200.0);
point2.x = 100.0;
point2.y = 200.0;

Note the lack of the use of new in the previous line of code, and the direct assign-
ment of values to an object’s data members. The point is basic to drawing opera-
tions, so Be has defined the BPoint to act like a basic datatype rather than a class.
The declaration of a BPoint is all that’s needed to actually create a BPoint object.

160 Chapter 5: Drawing

Because the BPoint data members are declared public, direct access is allowed.
You’ve seen a similar situation with the BRect class as well.

Line drawing

Unlike BPoint, the BeOS defines no BLine class to represent lines. Instead, line
drawing takes place using the BView member function StrokeLine(). When
invoking this function, you can use a pair of BPoint objects to specify the start
and end points of a line, or a single BPoint object to specify just the line’s end
point. If only the end point is specified, the current pen location in the view is
used as the start point. Both types of call to StrokeLine() are demonstrated
here:

BPoint start1(50.0, 50.0);
BPoint end1(150.0, 50.0);
BPoint start2(20.0, 200.0);
BPoint end2(20.0, 250.0);

StrokeLine(start1, end1);

MovePenTo(start2);
StrokeLine(end2);

In the previous snippet, two lines are drawn. The first is a horizontal line 100 pix-
els in length that is drawn from the point (50.0, 50.0) to the point (150.0, 50). The
second is a vertical line 50 pixels in length that is drawn from the point (20.0, 200.
0) to the point (20.0, 250.0).

Both versions of StrokeLine() offer a final optional parameter that specifies a
pattern in which the line is drawn. The following snippet draws lines of the same
length and location as the previous snippet (assume the same BPoint variables
are declared). Here, however, the horizontal line is red and the vertical line is
green:

rgb_color redColor = {255, 0, 0, 255};
rgb_color greenColor = {0, 255, 0, 255};

SetHighColor(redColor);
SetLowColor(greenColor);

StrokeLine(start1, end1, B_SOLID_HIGH);

MovePenTo(start2);
StrokELine(end2, B_SOLID_LOW);

You aren’t limited to the Be-defined patterns—any pattern can be used as an argu-
ment to StrokeLine(). In this next snippet, the diagonal stripe pattern discussed
earlier in this chapter is used. The high color is set to red, and the low color is left
in its default state of white. Additionally, the pen size is set to 10.0. The result is a

Shapes 161

line 10 pixels in thickness with diagonal red stripes running through it. Figure 5-11
shows the line that is drawn from this snippet:

pattern stripePattern = {0xcc, 0x66, 0x33, 0x99, 0xcc, 0x66, 0x33, 0x99};
rgb_color redColor = {255, 0, 0, 255};
BPoint start1(50.0, 50.0);
BPoint end1(150.0, 50.0);

SetHighColor(redColor);

SetPenSize(10.0);

StrokeLine(start1, end1, stripePattern);

PointAndLine example project

The PointAndLine project is a simple exercise in moving the pen and drawing
lines. The resulting program draws the two lines pictured in Figure 5-12.

The MyDrawView member function Draw() has been written to define two
BPoint objects that specify the start and end of a horizontal line. After drawing
the line, the pen is first moved to the line’s start point, and then moved down a
number of pixels. StrokeLine() is called again, this time to draw a diagonal line
that ends at the same point where the first line ended.

void MyDrawView::Draw(BRect)
{
 BPoint point1;
 BPoint point2;

Figure 5-11. Using the Magnify program to view a thick, patterned line

162 Chapter 5: Drawing

 point1.Set(100.0, 80.0);
 point2.Set(300.0, 80.0);

 StrokeLine(point1, point2);

 MovePenTo(point1);
 MovePenBy(0.0, 130.0);
 StrokeLine(point2);
}

Rectangles

The BRect class is used to create objects that represent rectangles. Rectangles are
important in their own right, as they’re the basis for defining the boundaries of
interface elements such as windows and controls. But they are also instrumental in
the definition of other shapes, including round rectangles, ellipses, and regions—
as you’ll see ahead.

Setting a rectangle

A BRect object has four data members of type float: left, top, right, and
bottom. Each data member specifies a pixel location that defines one of the four
edges of a rectangle. The values of the left and right members are relative to
the left edge of the view that is to hold the rectangle, while the values of the top
and bottom members are relative to the top edge of the view.

Upon declaration, the boundaries of a BRect object can be set by specifying val-
ues for each of the four data members or by listing two points—one of which
specifies the rectangle’s top left corner while the other specifies the rectangle’s
bottom right corner. In this next snippet, both of the BRect objects would have
the same boundaries:

BRect rect1(10.0, 30.0, 110.0, 130.0);

BPoint leftTopPt(10.0, 30.0);

Figure 5-12. The window that results from running the PointAndLine program

Shapes 163

BPoint rightBottomPt(110.0, 130.0);
BRect rect2(leftTopPt, rightBottomPt);

A rectangle’s data members can also be set after the BRect object’s declaration.
Again, the following rectangle shares the same coordinates as the previous two:

BRect aRect;

aRect.left = 10.0;
aRect.top = 30.0;
aRect.right = 110.0;
aRect.bottom = 130.0;

A more efficient means of achieving the above result is to use the BRect member
function Set(). The order of the values passed to Set() is left, top, right,
bottom:

BRect aRect;

aRect.Set(10.0, 30.0, 110.0, 130.0);

Like a point, which is represented by a BPoint object, a rectangle is considered
basic to drawing. The BRect class is set up so that a BRect object is created upon
declaration of a BRect. Additionally, the BRect data members are public, so they
can be accessed either directly or via member functions such as Set(). In short,
BRect objects and BPoint objects can and should be created on the stack
(declared locally).

Drawing a rectangle

In Chapter 4, you saw that shape drawing is achieved by invoking a BView mem-
ber function. There, StrokeRect() was called to draw a framing rectangle around
a view. In this chapter, you’ve already seen that a rectangle is filled by calling
FillRect(). Both routines accept as an argument a previously set up rectangle.
This snippet calls StrokeRect() to frame one rectangle, then calls FillRect()
to fill a smaller rectangle centered within the first:

BRect outerRect(10.0, 10.0, 160.0, 160.0);
BRect innerRect(30.0, 30.0, 140.0, 140.0);

StrokeRect(outerRect);
FillRect(innerRect);

Both StrokeRect() and FillRect() accept an optional pattern parameter.
Here the rectangles just defined are drawn with a black and white checkerboard
pattern:

StrokeRect(outerRect, B_MIXED_COLORS);
FillRect(innerRect, B_MIXED_COLORS);

164 Chapter 5: Drawing

Rectangles example project

The Rectangles project displays a window consisting of the rectangles shown in
Figure 5-13.

The left rectangle consists of many nested, or inset, rectangles. The MyDrawView
member function Draw() sets up what will be the outermost rectangle shown.
After the BRect object’s boundaries are set, a for loop insets and draws each rect-
angle. The BRect member function InsetBy() creates the desired inset effect by
adjusting the values of the data members of the calling BRect object. After fifteen
rectangles are framed one inside the other, a solid black rectangle is drawn to the
right of the window:

void MyDrawView::Draw(BRect)
{
 int32 i;
 BRect aRect;

 aRect.Set(30.0, 30.0, 130.0, 130.0);

 for (i = 0; i < 15; i++) {
 aRect.InsetBy(2.0, 2.0);
 StrokeRect(aRect);
 }

 aRect.Set(200.0, 30.0, 250.0, 130.0);
 FillRect(aRect);
}

Round rectangles

A rectangle with rounded corners is a shape that appears in both user-interface
elements (most buttons are round rectangles) and everyday objects (picture some
of the boxes in a flow chart). You can use the BView member function
StrokeRoundRect() to take an “ordinary” rectangle—a BRect object—and pro-
vide a degree of rounding to each of its corners.

Figure 5-13. The window that results from running the Rectangles program

Shapes 165

In StrokeRoundRect(), the first argument is a previously set up rectangle. The
second and third StrokeRoundRect() parameters specify the amount of round-
ing to be applied to each corner. Together these two parameters specify the shape
of an ellipse; the second parameter establishes the ellipse radius along the x-axis,
while the third parameter establishes the ellipse radius along the y-axis. Think of
setting an ellipse in each corner of the rectangle and drawing only one quarter of
the ellipse in order to form a rounded corner. The following snippet demonstrates
a call to StrokeRoundRect():

BRect aRect;

aRect.Set(30.0, 30.0, 130.0, 130.0);

StrokeRoundRect(aRect, 20.0, 20.0);

FillRoundRect(aRect, 30.0, 30.0);

To fill a round rectangle, call the BView member function FillRoundRect(). The
parameters to this function match those used in StrokeRoundRect():

BRect aRect;

aRect.Set(30.0, 30.0, 130.0, 130.0);

FillRoundRect(aRect, 20.0, 20.0);

Like other BView drawing routines, both StrokeRoundRect() and
FillRoundRect() accept an optional pattern argument. Omitting this argument
tells the view to use B_SOLID_HIGH.

Ellipses

You’ve seen that a line isn’t represented by a class, but is instead drawn using a
BView member function. A similar situation exists for an ellipse. And like a round
rectangle, an ellipse is specified using a rectangle.

Drawing an ellipse

After defining a rectangle, an ellipse is drawn by inscribing an oval within the
boundaries of the rectangle. The rectangle itself isn’t drawn—it simply serves to
specify the size of the ellipse. A circle, of course, is an ellipse whose height and
width are equal.

The BView member function StrokeEllipse() does the drawing:

BRect aRect;

aRect.Set(30.0, 30.0, 130.0, 130.0);
StrokeEllipse(aRect);

166 Chapter 5: Drawing

An ellipse can be filled by the BView member function FillEllipse():

BRect aRect;

aRect.Set(200.0, 30.0, 250.0, 130.0);
FillEllipse(aRect);

By default, an ellipse is outlined or filled using a solid pattern and the current high
color. As with other BView drawing routines, a call to either StrokeEllipse() or
FillEllipse() can include an optional second parameter that specifies a differ-
ent pattern.

An alternate method of specifying the boundaries of an ellipse is to supply
StrokeEllipse() or FillEllipse() with a center point and an x-axis and
y-axis radius. The next snippet draws a single ellipse that is both outlined and
filled. A call to SetLowColor() sets the low color to blue. The subsequent call to
FillEllipse() draws an ellipse that is filled with a black and blue checker-
board pattern. Specifying the B_MIXED_COLORS pattern in the call to
FillEllipse() tells the routine to fill the ellipse with a checkerboard pattern that
alternates the current high color (by default, black) with the current low color
(which was just set to blue). The call to StrokeEllipse() relies on the current
high color (black) to outline the ellipse in a solid pattern (B_SOLID_HIGH, since
no pattern was specified). Note that when both filling and outlining a single ellipse
it’s important to call the StrokeEllipse() routine after calling FillEllipse().
If the calling order is reversed, the call to FillEllipse() will obscure whatever
outline was drawn by the call to StrokeEllipse():

rgb_color blueColor = {0, 0, 255, 255};
BPoint center(100.0, 100.0);
float xRadius = 40.0;
float yRadius = 60.0;

SetLowColor(blueColor);
FillEllipse(center, xRadius, yRadius, B_MIXED_COLORS);

StrokeEllipse(center, xRadius, yRadius);

Polygons

A polygon is a closed shape with straight sides. Unlike a rectangle, which consists
of sides that must be vertical and horizontal, a polygon can include sides that run
diagonally.

Setting up a polygon

The BPolygon class is used to create objects that represent polygons. When creat-
ing a new BPolygon object, pass the BPolygon constructor an array of BPoints
that specify the points that make up the vertices of the polygon, along with an

Shapes 167

int32 value that specifies how many points are in the array. Here’s how a
BPolygon object representing a three-sided polygon might be defined:

BPoint pointArray[3];
int32 numPoints = 3;
BPolygon *aPolygon;

pointArray[0].Set(50.0, 100.0);
pointArray[1].Set(150.0, 20.0);
pointArray[2].Set(250.0, 100.0);

aPolygon = new BPolygon(pointArray, numPoints);

The previous snippet creates an array of three BPoint objects. The coordinates of
each BPoint object are then assigned by calling the BPoint member function
Set(). Next, new is used to create a new BPolygon object whose vertices are
defined by the BPoints in the pointArray array.

Alternatively, a BPolygon can be created without immediately defining its verti-
ces. In this case, the polygon can be defined later by calling the BPolygon mem-
ber function AddPoints(), which adds an array of BPoint objects to the
BPolygon object. Here, the same polygon that was defined in the previous snip-
pet is again defined—this time using a call to AddPoints():

BPoint pointArray[3];
int32 numPoints = 3;
BPolygon *aPolygon;

aPolygon = new BPolygon();

pointArray[0].Set(50.0, 100.0);
pointArray[1].Set(150.0, 20.0);
pointArray[2].Set(250.0, 100.0);

aPolygon->AddPoints(pointArray, numPoints);

Drawing a polygon

Once a BPolygon object is defined, its outline can be drawn by calling the BView
member function StrokePolygon(), or it can be filled in with the BView mem-
ber function FillPolygon(). If the following call to StrokePolygon() is made
after either of the previous two snippets execute, the result is an outlined triangle.

StrokePolygon(aPolygon);

Note that StrokePolygon() draws the lines of the polygon’s edges starting at the
first point in the array, and finishes by closing the polygon with a line from the
last point back to the first point. Thus, the previous call to StrokePolygon()
draws the following three lines.

168 Chapter 5: Drawing

• From point (50.0, 100.0) to point (150.0, 20.0)

• From point (150.0, 20.0) to point (250.0, 100.0)

• From point (250.0, 100.0) back to point (50.0, 100.0)

A call to FillPolygon() fills the previously defined polygon with a pattern. Here
the triangle polygon is filled with the default pattern of B_SOLID_HIGH:

FillPolygon(aPolygon);

As you’ve come to expect from the BView StrokeXxx() and FillXxx() rou-
tines, both StrokePolygon() and FillPolygon() may include an optional pat-
tern polygon that specifies a pattern to use for the outline or fill of the polygon.

Finally, you can include yet one more optional parameter in the polygon drawing
routines—a bool value that indicates whether the final shape-closing line should
or shouldn’t be drawn. By default, this line is drawn to finish up the polygon. If
false is passed, a series of connected lines rather than a polygon will be drawn.

Drawing a triangle

On the previous pages you saw how to define and draw a triangle using a
BPolygon object. The BeOS also provides a shortcut for working with this special
case of a polygon. It’s useful because so many 3D objects are built from dozens of
tiny triangles. Instead of defining an array of points and adding those points to a
BPolygon object, you can forego the both these steps and simply call one of two
BView member functions: StrokeTriangle() or FillTriangle(). Pass the
three BPoint objects that define the triangle’s vertices. Here, the same triangle that
was drawn using a BPolygon object is drawn using a call to StrokeTriangle():

BPoint point1;
BPoint point2;
BPoint point3;

point1.Set(50.0, 100.0);
point2.Set(150.0, 20.0);
point3.Set(250.0, 100.0);
StrokeTriangle(point1, point2, point3);

As expected, FillTriangle() is invoked in the same manner as
StrokeTriangle(). Again as expected, both functions accept an optional pat-
tern parameter.

Regions

A region groups a number of rectangles together into a single BRegion object.
This object can then be manipulated as a unitrotated, colored, and so forth. The
rectangles that make up a region can vary in size, and can be defined such that

Shapes 169

they form one continuous shape or any number of seemingly unrelated shapes. In
Figure 5-14, a window has been divided into four areas. Each area holds a single
region. That last point is worthy of repeating: the window holds four regions. The
rectangles in the area at the bottom left of the window don’t form a single, solid
area, but because they’ve been marked to all be a part of a single BRegion object,
they collectively make up a single region. The same applies to the rectangles in
the lower right area of the window.

Setting up a region

To set up a region, first create a new BRegion object. Then define a rectangle and
add that rectangle to the BRegion. In the following snippet, two rectangles are
defined and added to a BRegion object named aRegion:

BRect aRect;
BRegion *aRegion;

aRegion = new BRegion();

aRect.Set(20.0, 20.0, 70.0, 70.0);
aRegion->Include(aRect);

aRect.Set(50.0, 50.0, 150.0, 100.0);
aRegion->Include(aRect);

Drawing a region

Creating a region and adding rectangles to it defines the area (or areas) the region
occupies. It doesn’t, however, display the region in a view. To do that, invoke the

Figure 5-14. A window displaying four regions

170 Chapter 5: Drawing

BView member function FillRegion(). Here, the region that was created in the
previous snippet is filled with the default B_SOLID_HIGH pattern:

FillRegion(aRegion);

The BRegion object keeps track of all of the constituent rectangles and is respon-
sible for filling each. Like other FillXxx() functions FillRegion() allows you
to specify an optional pattern.

There is no StrokeRegion() member function in the BView class.
Because a region can consist of any number of overlapping rectan-
gles, outlining each individual rectangle would result in lines run-
ning through the contents of the region.

Testing for inclusion in a region

One important use of a region is to test where a point lies within an area. If a
point lies in any one of the rectangles that defines a region, that point is consid-
ered a part of, or belonging to, the region. To test a point for inclusion in a region,
call the BRegion member function Contains(). Pass this routine the BPoint
object to test, and Contains() will return a bool value that indicates whether or
not the tested point lies within the region. In this next snippet, a region consisting
of just a single rectangle is defined. A point is then defined and tested for inclu-
sion in this region:

BRect aRect(20.0, 20.0, 70.0, 70.0);
BRegion *aRegion;
BPoint aPoint(60.0, 90.0);

aRegion = new BRegion();
aRegion->Include(aRect);
FillRegion(aRegion);

if (aRegion->Contains(aPoint))
 // do something
else
 // do something else

Region example project

The Region project results in a program that displays a window like the one
shown in Figure 5-15.

The dark area in Figure 5-15 represents a single region composed of three
rectangles. The MyDrawView member function Draw() defines and adds each
rectangle in turn to the BRegion object. After all of the rectangles have been

Shapes 171

added, FillRegion() is called to fill the entire region with the default pattern of
B_SOLID_HIGH:

void MyDrawView::Draw(BRect)
{
 BRect aRect;
 BRegion *aRegion;

 aRegion = new BRegion();

 aRect.Set(20.0, 20.0, 70.0, 70.0);
 aRegion->Include(aRect);

 aRect.Set(50.0, 50.0, 150.0, 100.0);
 aRegion->Include(aRect);

 aRect.Set(85.0, 85.0, 170.0, 130.0);
 aRegion->Include(aRect);
 FillRegion(aRegion);
}

Region point testing example project

While the region shown in Figure 5-15 is filled, it doesn’t have to be. By omitting a
call to FillRegion(), it’s possible to define a region without making it visible.
One practical reason for doing this is for testing mouse button hits. If your pro-
gram needs to find out whether the user clicked in a particular area of a win-
dow—even a very irregularly shaped area—a region that includes the entire area
to test can be set up. The BRegion class includes a routine that tests for the inclu-
sion of a BPoint. The BView member function MouseDown() provides your appli-
cation with a BPoint object that holds the pixel location of the cursor at the time
of a mouse button click. By overriding a view’s MouseDown() function and imple-
menting it such that it compares the cursor location with the area of the region,
your program can easily respond to mouse button clicks in an area of any shape.

The RegionTest project creates a program that draws a region to a window—the
same region created by the Region example project and pictured in Figure 5-15.

Figure 5-15. The window that results from running the Region program

172 Chapter 5: Drawing

What’s been added is the ability to test for a mouse button click in the region. If
the user clicks anywhere in the dark area, the system beep is played. Clicking in
the window but outside of the region produces no effect.

To let the MyDrawView view (which occupies the entire area of the window it
resides in) respond to mouse button clicks, the program overrides MouseDown().
To enable a MyDrawView object to keep track of its region, a BRegion object has
been added as a private data member in the MyDrawView class. Here’s the new
declaration of the MyDrawView class:

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
 virtual void MouseDown(BPoint point);

 private:
 BRegion *fThreeRectRegion;
};

In the previous example (the Region project), the region was set up in the Draw()
function. Because in that project the MyDrawView class didn’t retain the informa-
tion about the region (it didn’t define a BRegion object as a data member), it was
necessary to recalculate the region’s area each time the view it resided in needed
updating. Now that the view retains this information, the BRegion needs to be set
up only once. The MyDrawView constructor is used for that purpose:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect aRect;

 fThreeRectRegion = new BRegion();

 aRect.Set(20.0, 20.0, 70.0, 70.0);
 fThreeRectRegion->Include(aRect);

 aRect.Set(50.0, 50.0, 150.0, 100.0);
 fThreeRectRegion->Include(aRect);

 aRect.Set(85.0, 85.0, 170.0, 130.0);
 fThreeRectRegion->Include(aRect);
}

With the BRegion construction moved to the MyDrawView constructor, the imple-
mentation of the MyDrawView member function Draw() is reduced to nothing
more than a call to FillRegion():

void MyDrawView::Draw(BRect)
{

Shapes 173

 FillRegion(fThreeRectRegion);
}

Implementing the MouseDown() routine for the MyDrawView class is as easy as
comparing the cursor location (supplied by the system when it automatically
invokes MouseDown()) to the area of the region. The BRegion member function
Contains() handles that task:

void MyDrawView::MouseDown(BPoint point)
{
 if (fThreeRectRegion->Contains(point))
 beep();
}

If the cursor is over any part of the region when the mouse button is clicked, the
computer beeps. Your more sophisticated program will of course find something
more interesting to do in response to the user clicking the mouse button in a
region!

Pictures

Now that you know about the myriad shapes the BeOS allows you to draw, you’ll
appreciate the BPicture class. A BPicture object consists of any number of
shapes of any type. Once defined, this combination of one, two, or hundreds of
shapes can be quickly drawn and redrawn with a single function call.

Setting up a picture

A picture object is created by using new to allocate memory for an empty, tempo-
rary BPicture. The creation of the new object takes place within a call to the
BView member function BeginPicture(). Doing so instructs the view to store
the results of subsequent calls to BView drawing functions in the picture object, as
opposed to drawing the results of the calls to the view (as is normally the case).
When the picture is considered complete, the BView member function
EndPicture() is called. This routine returns the completed temporary picture
object. This temporary object should be assigned to an application-defined
BPicture object. The following snippet provides an example:

BPicture *aPicture;

BeginPicture(new BPicture);
 BRect aRect;

 aRect.Set(10.0, 10.0, 30.0, 30.0);
 FillRect(aRect);
 MovePenTo(40.0, 10.0);
 StrokeLine(BPoint(60.0, 10.0));
aPicture = EndPicture();

174 Chapter 5: Drawing

For simplicity, the previous snippet defines a picture that consists of a small filled-
in rectangle and a short, horizontal line. Your own pictures may prove to be far
more complex. In particular, you’ll want to include calls such as SetFont(),
SetPenSize(), and so forth in order to set up the drawing environment appropri-
ate to your drawing. If such calls aren’t made, the state of the view’s drawing envi-
ronment at the time the picture is created will be used when the picture is later
drawn.

The previous snippet indents the code between the
BeginPicture() and EndPicture() calls for purely aesthetic rea-
sons. Doing so isn’t necessary, but it does make it obvious just what
code the picture object consists of.

Completing a picture by calling EndPicture() doesn’t prohibit you from adding
to that same picture at a later time. To add to an existing BPicture object, pass
that object to BeginPicture() and start drawing. After calling EndPicture(),
the new drawing code will be a part of the existing picture. Here the previous pic-
ture-creating snippet is repeated. After the picture is completed, it is reopened and
a vertical line is added to it:

BPicture *aPicture;

BeginPicture(new BPicture);
 BRect aRect;

 aRect.Set(10.0, 10.0, 30.0, 30.0);
 FillRect(aRect);_
 MovePenTo(40.0, 10.0);
 StrokeLine(BPoint(60.0, 10.0));
aPicture = EndPicture();
...
...
BeginPicture(aPicture);
 MovePEnTo(10.0, 40.0);
 StrokeLine(BPoint(10.0, 60.0));
aPicture = EndPicture();

Drawing a picture

Once defined, a picture is drawn by invoking the BView member function
DrawPicture(). Just pass the picture as the argument:

DrawPicture(aPicture);

Before calling DrawPicture(), specify the starting position of the picture by mov-
ing the pen to where the upper left corner should be. Alternately, a BPoint object
can be passed to DrawPicture() to denote where drawing should start. Both

Shapes 175

techniques are shown here. The result of executing the code will be two identical
pictures, one beneath the other.

BPicture *aPicture;

BeginPicture(new BPicture);
 // line and shape-drawing code here
aPicture = EndPicture();

MovePenTo(100.0, 20.0);
DrawPicture(aPicture);

DrawPicture(aPicture, BPoint(100.0, 250.0);

Keep in mind that if a picture hasn’t set up its drawing environment, the state of
the view at the time the picture was created is used when the picture is drawn. If
the view’s graphic state happened to be in its default state (a high color of black, a
pen size of 1.0, and so forth), the drawing will be made as expected. However, if
any of the view’s graphic settings were altered at some point before the picture
was created, the drawing of the picture may occur with unpredictable and undesir-
able effects. Consider the previous snippet. If a call to SetPenSize(10.0) had
been made somewhere before the call to BeginPicture(), any line drawing
done by the aPicture picture would include lines with a thickness of 10 pixels.
That most likely won’t be the desired effect. If the picture is to draw lines with a
thickness of 1 pixel, then a call to SetPenSize(1.0) should be made in the pic-
ture-defining code, like this:

BPicture *aPicture;

BeginPicture(new BPicture);
 SetPenSize(1.0);
 // line and shape-drawing code here
aPicture = EndPicture();

You don’t have to keep track and reverse changes that are made to the drawing
environment by a picture. That is, after a call to EndPicture(), your code doesn’t
need to restore the view’s environment to its pre-BeginPicture() state. That’s
because all environmental changes that are made between calls to
BeginPicture() and EndPicture() apply only to the picture, not to the view.

Picture example project

The Picture project draws a number of cascading rectangles, as shown in
Figure 5-16.

For this project I’ve added a private data member BPicture object named
fPicture to the MyDrawView class. In the MyDrawView member function
AttachedToWindow(), this picture is created and defined. A for loop is used to
set up the numerous offset rectangles that make up the picture.

176 Chapter 5: Drawing

void MyDrawView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);

 BeginPicture(new BPicture);
 BRect aRect;
 int32 i;

 for (i=0; i<80; i++) {
 aRect.Set(i*2, i*2, i*3, i*3);
 StrokeRect(aRect);
 }
 fPicture = EndPicture();
}

While the temptation is to define the picture in the MyDrawView constructor (it is,
after all, an initialization act), the code must instead appear in the
AttachedToWindow() routine. The BPicture definition relies on the current state
of the view the picture belongs to, and the view’s state isn’t completely set up
until AttachedToWindow() executes.

Once the picture is set up and saved in the fPicture data member, a
MyDrawView object can make use of it. That’s done in the Draw() function, where
a call to MovePenTo() ensures that the drawing will start in the top left corner of
the view (and, because the view is the same size as the window, the top left cor-
ner of the window). A call to DrawPicture() performs the drawing:

void MyDrawView::Draw(BRect)
{
 MovePenTo(0.0, 0.0);
 DrawPicture(fPicture);
}

Figure 5-16. The window that results from running the Picture program

177

Chapter 6

In this chapter:
• Introduction to

Controls
• Buttons
• Picture Buttons
• Checkboxes
• Radio Buttons
• Text Fields
• Multiple Control

Example Project

6
6.Controls and

Messages

A control is a graphic image that resides in a window and acts as a device that
accepts user input. The BeOS API includes a set of classes that make it easy to add
certain predefined controls to a program. These standard controls include the but-
ton, checkbox, radio button, text field, and color control. There’s also a Be-defined
class that allows you to turn any picture into a control. That allows you to create
controls that have the look of real-world devices such as switches and dials.
Chapter 5, Drawing, described the color control and the BColorControl class
used to create such controls. This chapter discusses other control types and the
classes used to create each. Also discussed is the BControl class, the class from
which all other control classes are derived.

When the user clicks on a control, the system responds by sending a message to
the window that holds the control. This message indicates exactly which control
has been clicked. The message is received by the window’s MessageReceived()
hook function, where it is handled. Since the BWindow version of
MessageReceived() won’t know how to go about responding to messages that
originate from your controls, you’ll override this routine. Your application then
gains control of how such messages are handled, and can include any code neces-
sary to carry out the task you want the control to perform. This chapter includes
examples that demonstrate how to create controls and how to override
MessageReceived() such that the function handles mouse clicks on controls of
any of the standard types.

Introduction to Controls
When a BWindow object receives a message, it either handles the message itself or
lets one of its views handle it. To handle a message, the window invokes a
BWindow hook function. For example, a B_ZOOM message delivered to a window

178 Chapter 6: Controls and Messages

results in that window invoking the BWindow hook function Zoom() to shrink or
enlarge the window. To allocate the handling of a message to one of its views, the
window passes the message to the affected view, and the view then invokes the
appropriate BView hook function. For example, a B_MOUSE_DOWN message results
in the affected view invoking the BView hook function MouseDown().

Besides being the recipient of system messages, a window is also capable of
receiving application-defined messages. This lets you implement controls in your
application’s windows. When you create a control (such as a button object from
the BButton class), define a unique message type that becomes associated with
that one control. Also, add the control to a window. When the user operates the
control (typically by clicking on it, as for a button), the system passes the applica-
tion-defined message to the window. How the window handles the message is
determined by the code you include in the BWindow member function
MessageReceived().

Control Types

You can include a number of different types of controls in your windows. Each
control is created from a class derived from the abstract class BControl. The
BControl class provides the basic features common to all controls, and the
BControl-derived classes add capabilities unique to each control type. In this
chapter, you’ll read about the following control types:

Button
The BButton class is used to create a standard button, sometimes referred to
as a push button. Clicking on a button results in some immediate action tak-
ing place.

Picture button
The BPictureButton class is used to create a button that can have any size,
shape, and look to it. While picture buttons can have an infinite variety of
looks, they act in the same manner as a push button—a mouse click results in
an action taking place.

Checkbox
The BCheckBox class creates a checkbox. A checkbox has two states: on and
off. Clicking a checkbox always toggles the control to its opposite state or
value. Clicking on a checkbox usually doesn’t immediately impact the pro-
gram. Instead, a program typically waits until some other action takes place
(such as the click of a certain push button) before gathering the current state
of the checkbox. At that time, some program setting or feature is adjusted
based on the value in the checkbox.

Introduction to Controls 179

Radio button
The BRadioButton class is used to create a radio button. Like a checkbox, a
radio button has two states: on and off. Unlike a checkbox, a radio button is
never found alone. Radio buttons are grouped together in a set that is used to
control an option or feature of a program. Clicking on a radio button turns off
whatever radio button was on at the time of the mouse click, and turns on the
newly clicked radio button. Use a checkbox in a yes or no or true or false sit-
uation. Use radio buttons for a condition that offers multiple choices that are
mutually exclusive (since only one button can be on at any given time).

Text field
The BTextControl class is used to create a text field. A text field is a control
consisting of a static string on the left and an editable text area on the right.
The static text acts as a label that provides the user with information about
what is to be typed in the editable text area of the control. Typing text in the
editable text area of a control can have an immediate effect on the program,
but it’s more common practice to wait until some other action takes place (like
a click on a push button) before the program reads the user-entered text.

Color control
The BColorControl class, shown in Chapter 5, creates color controls. A color
control displays the 256 system colors, each in a small square. The user can
choose a color by clicking on it. A program can, at any time, check to see
which color the user has currently selected, and perform some action based
on that choice. Often the selected color is used in the next, or all subsequent,
drawing operation the program performs.

Figure 6-1 shows four of the six types of controls available to you. In the upper
left of the figure is a button. The control in the upper right is a text field. The
lower left of the figure shows a checkbox in both its on and off states, while the
lower right of the figure shows a radio button in both its states. A picture button
can have any size and look you want, so it’s not shown. All the buttons are associ-
ated with labels that appear on or next to the controls themselves.

The sixth control type, the color control based on the BColorControl class, isn’t
shown either—it was described in detail in Chapter 5 and will only be mentioned
in passing in this chapter.

A control can be in an enabled statewhere the user can interact with itor a
disabled state. A disabled control will appear dim, and clicking on the control will
have no effect. Figure 6-2 shows a button control in both its enabled state (left-
most in the figure) and its disabled state (rightmost in the figure). Also shown is
what an enabled button looks like when it is selected using the Tab key (middle
in the figure). A user can press the Tab key to cycle through controls, making each
one in turn the current control. As shown in Figure 6-2, a button’s label will be

180 Chapter 6: Controls and Messages

underlined when it’s current. Once current, other key presses (typically the Return
and Enter key) affect that control.

Creating a Control

A control is created from one of six Interface Kit classes—each of which is cov-
ered in detail in this chapter. Let us start by examining the BControl class from
which they are derived.

The BControl class

The BControl class is an abstract class derived from the BView and BInvoker
classes. Control objects are created from BControl-derived classes, so all controls
are types of views.

It’s possible to create controls that aren’t based on the BControl
class. In fact, the Be API does that for the BListView and
BMenuItem classes. These are exceptions, though. You’ll do best by
basing each of your application’s controls on one of the six
BControl-derived classes. Doing so means your controls will
behave as expected by the user.

BControl is an abstract class, so your project will create BControl-derived class
objects rather than BControl objects. However, because the constructor of each
BControl-derived class invokes the BControl constructor, a study of the
BControl constructor is a worthwhile endeavor. Here’s the prototype:

BControl(BRect frame,
 const char *name,

Figure 6-1. Examples of button, text field, checkbox, and radio button controls

Figure 6-2. A button control that’s (from left to right) enabled, current, and disabled

Introduction to Controls 181

 const char *label,
 BMessage *message,
 uint32 resizingMode,
 uint32 flags)

Four of the six BControl constructor parameters match BView constructor param-
eters. The frame, name, resizingMode, and flags arguments get passed to the
BView constructor by the BControl constructor. These parameters are discussed
in Chapter 4, Windows, Views, and Messages, so here I’ll offer only a brief recap of
their purposes. The frame parameter is a rectangle that defines the boundaries of
the view. The name parameter establishes a name by which the view can be iden-
tified at any time. The resizingMode parameter is a mask that defines the behav-
ior of the view should the size of the view’s parent view change. The flags
parameter is a mask consisting of one or more Be-defined constants that deter-
mine the kinds of notifications (such as update) the view is to be aware of.

The remaining two BControl constructor parameters are specific to the control.
The label parameter is a string that defines the text associated with it. For
instance, for a button control, the label holds the words that appear on the but-
ton. The message parameter is a BMessage object that provides a means for the
system to recognize the control as a unique entity. When the control is selected by
the user, it is this message that the system will send to the window that holds the
control.

Your project won’t create BControl objects, so a sample call to the BControl
constructor isn’t useful here. Instead, let’s look at the simplest type of BControl-
derived object: the BButton.

The BButton class

Creating a new push button involves creating a new BButton object. The
BButton constructor parameters are an exact match of those used by the
BControl constructor:

BButton(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BButton constructor invokes the BControl constructor, passing all of its
arguments to that routine. The BControl constructor uses the label argument to
initialize the button’s label, and uses the message argument to assign a unique
message to the button. The BControl constructor then invokes the BView con-
structor, passing along the remaining four arguments it received from the BButton
constructor. The BView constructor then sets up the button as a view. After the

182 Chapter 6: Controls and Messages

BControl and BView constructors have executed, the BButton constructor car-
ries on with its creation of a button object by implementing button-specific tasks.
This is, in essence, how the constructor for each of the BControl-derived classes
works.

Creating a button

A button is created by defining the arguments that are passed to the BButton con-
structor and then invoking that constructor using new. To become functional, the
button must then be added to a window. That’s what’s taking place in this snippet:

#define BUTTON_OK_MSG 'btmg'

BRect buttonRect(20.0, 20.0, 120.0, 50.0);
const char* buttonName = "OKButton";
const char* buttonLabel = "OK";
BButton *buttonOK;

buttonOK = new BButton(buttonRect, buttonName,
 buttonLabel, new BMessage(BUTTON_OK_MSG));

aView->AddChild(buttonOK);

In the above code, the BRect variable buttonRect defines the size and location
of the button. This push button will be 100 pixels wide by 30 pixels high. The
buttonName string gives the button the name “OKButton.” This is the name used
to locate and access the button by view name using the BView member function
FindView(). The name that actually appears on the button itself, “OK,” is defined
by the buttonLabel string. The message associated with the new button control
is a new BMessage object of type BUTTON_OK_MSG. I’ll explain the BMessage class
in a minute. Here it suffices to say that, as shown above, creating a new message
can be as easy as defining a four-character string and passing this constant to the
BMessage constructor.

The BButton constructor prototype lists six parameters, yet the above invocation
of that constructor passes only four arguments. The fifth and sixth parameters,
resizingMode and flags, offer default values that are used when these argu-
ments are omitted. The default resizingMode value (B_FOLLOW_LEFT |
B_FOLLOW_TOP) creates a button that will remain a fixed distance from the left and
top edges of the control’s parent view should the parent view be resized. The
default flags value (B_WILL_DRAW | B_NAVIGABLE) specifies that the control
needs to be redrawn if altered, and that it can become the focus view in response
to keyboard actions.

Adding a control to a window means adding the control to a view. In the above
snippet, it’s assumed that a view (perhaps an object of the application-defined
BView-derived MyDrawView class) has already been created.

Introduction to Controls 183

Enabling and disabling a control

When a control is created, it is initially enabled—the user can click on the control
to select it. If you want a control to be disabled, invoke the control’s
SetEnabled() member function. The following line of code disables the
buttonOK button control that was created in the previous snippet:

buttonOK->SetEnabled(false);

SetEnabled() can be invoked on a control at any time, but if the control is to
start out disabled, call SetEnabled() before displaying the window the control
appears in. To again enable a control, call SetEnabled() with an argument of
true.

This chapter’s CheckBoxNow project demonstrates the enabling and disabling of a
button. The technique in that example can be used on any type of control.

Turning a control on and off

Checkboxes and radio buttons are two-state controls—they can be on or off.
When a control of either of these two types is created, it is initially off. If you want
the control on (to check a checkbox or fill in a radio button), invoke the
BControl member function SetValue(). Passing SetValue() the Be-defined
constant B_CONTROL_ON sets the control to on. Turning a control on and off in
response to a user action in the control is the responsibility of the system—not
your program. So after creating a control and setting it to the state you want, you
will seldom need to call SetValue(). If you want your program to “manually”
turn a control off (as opposed to doing so in response to a user action), have the
control invoke its SetValue() function with an argument of B_CONTROL_OFF.

A button is a one-state device, so turning a button on or off doesn’t make sense.
Instead, this snippet turns on a two-state control—a checkbox:

requirePasswordCheckBox->SetValue(B_CONTROL_ON)

Creating checkboxes hasn’t been covered yet, so you’ll want to look at the Check-
Box example project later in this chapter to see the complete code for creating and
turning on a checkbox.

Technically, a button is also a two-state control. When it is not being
clicked, it’s off. When the control is being clicked (and before the
user releases the mouse button), it’s on. This point is merely an
aside, though, as it’s unlikely that your program will ever need to
check the state of a button in the way it will check the state of a
checkbox or radio button.

184 Chapter 6: Controls and Messages

To check the current state of a control, invoke the BControl member function
Value(). This routine returns an int32 value that is either B_CONTROL_ON (which
is defined to be 1) or B_CONTROL_OFF (which is defined to be 0). This snippet
obtains the current state of a checkbox, then compares the value of the state to the
Be-defined constant B_CONTROL_ON:

int32 controlState;

controlState = requirePasswordCheckBox->Value();
if (controlState == B_CONTROL_ON)
 // password required, display password text field

Changing a control’s label

Both checkboxes and radio buttons have a label that appears to the right of the
control. A text field has a label to the left of the control. The control’s label is set
when the control is created, but it can be changed on the fly.

The BControl member function SetLabel() accepts a single argument: the text
that is to be used in place of the control’s existing label. In this next snippet, a
button’s label is initially set to read “Click,” but is changed to the string “Click
Again” at some point in the program’s execution:

BRect buttonRect(20.0, 20.0, 120.0, 50.0);
const char *buttonName = "ClickButton";
const char *buttonLabel = "Click";
BButton *buttonClick;

buttonOK = new BButton(buttonRect, buttonName,
 buttonLabel, new BMessage(BUTTON_CLICK_MSG));

aView->AddChild(buttonClick);
...
...
buttonClick->SetLabel("Click Again");

The labels of other types of controls are changed in the same manner. The last
example project in this chapter, the TextField project, sets the label of a button to
a string entered by the user.

Handling a Control

BControl-derived classes take care of some of the work of handling a control. For
instance, in order to properly update a control in response to a mouse button
click, your program doesn’t have to keep track of the control’s current state, and it
doesn’t have to include any code to set the control to the proper state (such as
drawing or erasing the check mark in a checkbox). What action your program
takes in response to a mouse button click is, however, your program’s responsibil-
ity. When the user clicks on a control, a message will be delivered to the affected

Introduction to Controls 185

window. That message will be your program’s prompt to perform whatever action
is appropriate.

Messages and the BMessage class

When the Application Server delivers a system message to an application
window, that message arrives in the form of a BMessage object. Your code deter-
mines how to handle a system message simply by overriding a BView hook func-
tion (such as MouseDown()). Because the routing of a message from the Applica-
tion Server to a window and then possibly to a view’s hook function is
automatically handled for you, the fact that the message is a BMessage object may
not have been important (or even known) to you. A control also makes use of a
BMessage object. However, in the case of a control, you need to know a little bit
about working with BMessage objects.

The BMessage class defines a message object as a container that holds informa-
tion. Referring to the BMessage class description in the Application Kit chapter of
the Be Book, you’ll find that this information consists of a name, some number of
bytes of data, and a type code. You’ll be pleased to find out that when using a
BMessage in conjunction with a control, a thorough knowledge of these details of
the BMessage class isn’t generally necessary (complex applications aside). Instead,
all you need to know of this class is how to create a BMessage object. The snip-
pet a few pages back that created a BButton object illustrated how that’s done:

#define BUTTON_OK_MSG 'btmg'

// variable declarations here

buttonOK = new BButton(buttonRect, buttonName,
 buttonLabel, new BMessage(BUTTON_OK_MSG));

The only information you need to create a BMessage object is a four-character lit-
eral, as in the above definition of BUTTON_OK_MSG as ‘btmg’. This value, which
will serve as the what field of the message, is actually a uint32. So you can
define the constant as an unsigned 32-bit integer, though most programmers find it
easier to remember a literal than the unsigned numeric equivalent. This value then
becomes the argument to the BMessage constructor in the BButton constructor.
This newly created message object won’t hold any other information.

The BMessage class defines a single public data member named what. The what
data member holds the four-character string that distinguishes the message from all
other message types—including system messages—the application will use. In the
previous snippet, the constant btmg becomes the what data member of the
BMessage object created when invoking the BButton constructor.

186 Chapter 6: Controls and Messages

When the program refers to a system message by its Be-defined constant, such as
B_QUIT_REQUESTED or B_KEY_DOWN, what’s really of interest is the what data
member of the system message. The value of each Be-defined message constant is
a four-character string composed of a combination of only uppercase characters
and, optionally, one or more underscore characters. Here’s how Be defines a few
of the system message constants:

enum {
 B_ABOUT_REQUESTED = '_ABR',
 ...
 ...
 B_QUIT_REQUESTED = '_QRQ',
 ...
 ...
 B_MOUSE_DOWN = '_MDN',
 ...
 ...
};

Be intentionally uses the message constant value convention of uppercase-only
characters and underscores to make it obvious that a message is a system mes-
sage. You can easily avoid duplicating a Be-defined message constant by simply
including one or more lowercase characters in the literal of your own application-
defined message constants. And to make it obvious that a message isn’t a Be-
defined one, don’t start the message constant name with “B_”. In this book’s
examples, I have chosen to use a fairly informative convention in choosing sym-
bols for application-defined control messages: start with the control type, include a
word or words descriptive of what action the control results in, and end with
“MSG” for “message.” The value of each constant may hint at the message type
(for instance, ‘plSD’ for “play sound”), but aside from avoiding all uppercase char-
acters, the value is somewhat arbitrary. These two examples illustrate the conven-
tion I use:

#define BUTTON_PLAY_SOUND_MSG 'plSD'
#define CALCULATE_VALUES 'calc'

Messages and the MessageReceived() member function

The BWindow class is derived from the BLooper class, so a window is a type of
looper—an object that runs a message loop that receives messages from the Appli-
cation Server. The BLooper class is derived from the BHandler class, so a win-
dow is also a handler—an object that can handle messages that are dispatched
from a message loop. A window can both receive messages and handle them.

For the most part, system messages are handled automatically; for instance, when
a B_ZOOM message is received, the operating system zooms the window. But you
cannot completely entrust the handling of an application-defined message to the
system.

Introduction to Controls 187

When a user selects a control, the Application Server delivers a message object
with the appropriate what data member value to the affected BWindow object.
You’ve just seen a snippet that created a BButton associated with a BMessage
object. That BMessage had a what data member of ‘btmg’. If the user clicked on
the button that results from this object, the Application Server would deliver such
a message to the affected BWindow. It’s up to the window to include code that
watches for, and responds to, this type of message. The BWindow class member
function MessageReceived() is used for this purpose.

When an application-defined message reaches a window, it looks for a
MessageReceived() function. This routine receives the message, examines the
message’s what data member, and responds depending on its value. The
BHandler class defines such a MessageReceived() function. The BHandler-
derived class BWindow inherits this function and overrides it. The BWindow ver-
sion includes a call to the base class BHandler version, thus augmenting what
BHandler offers. If the BWindow version of MessageReceived() can’t handle a
message, it passes it up to the BHandler version of this routine. Figure 6-3 shows
how a message that can’t be handled by one version of MessageReceived() gets
passed up to the next version of this function.

Here is how the MessageReceived() looks in BWindow:

void BWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 // handle B_KEY_DOWN and scripting-related system messages

Figure 6-3. Message passed to parent class’s version of MessageReceived()

messageApplication
server MessageReceived()

BWindow-derived
version

MessageReceived()

BWindow
version

MessageReceived()

BHandler
version

message

message

188 Chapter 6: Controls and Messages

 default:
 BHandler::MessageReceived(message);
 }
}

Your project’s windows won’t be based directly on the BWindow class. Instead,
windows will be objects of a class you derive from BWindow. While such a
BWindow-derived class will inherit the BWindow version of MessageReceived(),
that version of the function won’t suffice—it won’t know anything about the appli-
cation-defined messages you’ve paired with the window’s controls. Your BWindow-
derived class should thus do what the BWindow class does: override the inherited
version of MessageReceived() and, within the new implementation of this func-
tion, invoke the inherited version:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 // handle application-defined messages

 default:
 BWindow::MessageReceived(message);
 }
}

What messages your BWindow-derived class version of MessageReceived() looks
for depends on the controls you’re adding to windows of that class type. If I add a
single button to windows of the MyHelloWindow class, and the button’s BButton
constructor pairs a message object with a what constant of BUTTON_OK_MSG (as
shown in previous snippets), the MyHelloWindow version of MessageReceived()
would look like this:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_OK_MSG:
 // handle a click on the OK button
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

The particular code that appears under the control’s case label depends entirely
on what action you want to occur in response to the control being clicked. For
simplicity, assume that we want a click on the OK button to do nothing more than
sound a beep. The completed version of MessageReceived() looks like this:

Buttons 189

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_OK_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Buttons
The BButton class is used to create a button—a labeled push button that is oper-
ated when the button is clicked. The previous sections used the BButton class
and button objects for its specific examples and in its code snippets. That section
provided some background on creating and working with buttons, so the empha-
sis here will be on incorporating the button-related code in a project.

Creating a Button

The BButton constructor has six parameters, each of which was described in the
“The BButton class” section of this chapter:

BButton(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BButton constructor calls the BControl constructor, which in turn calls the
BView constructor. Together, these routines set up and initialize a BButton object.

After attaching the button to a window, the height of the button may automati-
cally be adjusted to accommodate the height of the text of the button’s label and
the border of the button. If the values of the frame rectangle coordinates result in
a button that isn’t high enough, the BButton constructor will increase the button
height by increasing the value of the frame rectangle’s bottom value. The exact
height of the button depends on the font in which the button label is displayed.

For the example button creation code, assume that a window is keeping track of
BView and BButton objects in data members named fView and fButton, respec-
tively, and that the button’s message type is defined by the constant BUTTON_MSG:

#define BUTTON_MSG 'bttn'

class MyWindow : public BWindow {
 ...

190 Chapter 6: Controls and Messages

 private:
 BView *fView;
 BButton *fButton;
}

The code that creates a new button and adds it to the view fView might then look
like this:

BRect buttonRect(20.0, 20.0, 100.0, 50.0);

fButton = new BButton(buttonRect, "MyButton",
 "Click Me", new BMessage(BUTTON_MSG));

fView->AddChild(fButton);

Making a Button the Default Button

One button in a window can be made the default button—a button that the user
can select either by clicking or by pressing the Enter key. If a button is the default
button, it is given a wider border so that the user recognizes it as such a button.
To make a button the default button, call the BButton member function
MakeDefault():

fButton->MakeDefault(true);

If the window that holds the new default button already had a default button, the
old default button automatically loses its default status and becomes a “normal”
button. The system handles this task to ensure that a window has only one default
button.

While granting one button default status may be a user-friendly gesture, it might
also not make sense in many cases. Thus, a window isn’t required to have a
default button.

Button Example Project

The TwoButtons project demonstrates how to create a window that holds two but-
tons. Looking at Figure 6-4, you can guess that a click on the leftmost button
(which is the default button) results in the playing of the system sound a single
time, while a click on the other button produces the beep twice.

Preparing the window class for the buttons

A few additions to the code in the MyHelloWindow.h file are in order. First, a pair
of constants are defined to be used later when the buttons are created. The choice
of constant names and values is unimportant, provided that the names don’t begin
with “B_” and that the constant values don’t consist of all uppercase characters.

Buttons 191

#define BUTTON_BEEP_1_MSG 'bep1'
#define BUTTON_BEEP_2_MSG 'bep2'

To keep track of the window’s two buttons, a pair of data members of type
BButton are added to the already present data member of type MyDrawView. And
now that the window will be receiving and responding to application-defined
messages, the BWindow-inherited member function MessageReceived() needs to
overridden:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BButton *fButtonBeep2;
};

Creating the buttons

The buttons are created and added to the window in the MyHelloWindow con-
structor. Before doing that, the constructor declares several variables that will be
used in the pair of calls to the BButton constructor and assigns them values:

BRect buttonBeep1Rect(20.0, 60.0, 110.0, 90.0);
BRect buttonBeep2Rect(130.0, 60.0, 220.0, 90.0);
const char *buttonBeep1Name = "Beep1";
const char *buttonBeep2Name = "Beep2";
const char *buttonBeep1Label = "Beep One";
const char *buttonBeep2Label = "Beep Two";

In the past, you’ve seen that I normally declare a variable within the routine that
uses it, just before its use. Here I’ve declared the six variables that are used as
BButton constructor arguments outside of the MyHelloWindow constructor—but
they could just as well have been declared within the MyHelloWindow construc-
tor. I opted to do things this way to get in the habit of grouping all of a window’s

Figure 6-4. The window that results from running the TwoButtons program

192 Chapter 6: Controls and Messages

layout-defining code together. Grouping all the button boundary rectangles,
names, and labels together makes it easier to lay out the buttons in relation to one
another and to supply them with logical, related names and labels. This technique
is especially helpful when a window holds several controls.

The buttons will be added to the fMyView view. Recall that this view is of the
BView-derived application-defined class MyDrawView and occupies the entire con-
tent area of a MyHelloWindow. In the MyHelloWindow constructor, the view is
created first, and then the buttons are created and added to the view:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);
 fButtonBeep1->MakeDefault(true);

 fButtonBeep2 = new BButton(buttonBeep2Rect, buttonBeep2Name,
 buttonBeep2Label,
 new BMessage(BUTTON_BEEP_2_MSG));

 fMyView->AddChild(fButtonBeep2);

 Show();
}

Handling button clicks

MessageReceived() always has a similar format. The Application Server passes
this function a message as an argument. The message data member what holds
the message type, so that data member should be examined in a switch state-
ment, with the result compared to any application-defined message types the win-
dow is capable of handling. A window of type MyHelloWindow can handle a
BUTTON_BEEP_1_MSG and a BUTTON_BEEP_2_MSG. If a different type of message is
encountered, it gets passed on to the BWindow version of MessageReceived():

void MyHelloWindow::MessageReceived(BMessage* message)
{
 bigtime_t microseconds = 1000000; // one second

 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 beep();

Picture Buttons 193

 break;

 case BUTTON_BEEP_2_MSG:
 beep();
 snooze(microseconds);
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Picture Buttons
A picture button is a button that has a picture on its face rather than a text label.
The picture button behaves like a standard push button—clicking and releasing
the mouse button while over the picture button selects it.

The BPictureButton class is used to create a picture button. Associated with one
BPictureButton object are two BPicture objects. One of the pictures acts as the
button when the button is in its normal state (that is, when the user isn’t clicking
on it). The other picture acts as the button when the user clicks on the button.
You’ll supply a BPictureButton object with the two pictures, and the system will
be responsible for switching back and forth between the pictures in response to
the user’s actions.

Creating a Picture Button

A picture button is created by the BPictureButton constructor. As is the case for
other controls, this constructor invokes the BControl constructor, which in turn
invokes the BView constructor:

BPictureButton(BRect frame,
 const char *name,
 BPicture *off,
 BPicture *on,
 BMessage *message,
 uint32 behavior = B_ONE_STATE_BUTTON,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BPictureButton constructor has eight parameters, five of which you’re
already familiar with. The frame, name, resizingMode, and flags parameters
get passed to the BView constructor and are used in setting up the picture button
as a view. The message parameter is used by the BControl constructor to assign
a message type to the picture button. The remaining three parameters, off, on,
and behavior, are specific to the creation of a picture button.

194 Chapter 6: Controls and Messages

The off and on parameters are BPicture objects that define the two pictures to
be used to display the button. In Chapter 5, you saw how to create a BPicture
object using the BPicture member functions BeginPicture() and
EndPicture(). Here I create a picture composed of a white circle within a black
circle:

BPicture *buttonOffPict;

fMyView->BeginPicture(new BPicture);
 BRect aRect(0.0, 0.0, 50.0, 50.0);

 fMyView->FillEllipse(aRect, B_SOLID_HIGH);
 aRect.InsetBy(10.0, 10.0);
 fMyView->FillEllipse(aRect, B_SOLID_LOW);
buttonOffPict = fMyView->EndPicture();

A second BPicture object should then be created in the same way. These two
BPicture objects could then be used as the third and fourth arguments to the
BPictureButton constructor.

For more compelling graphic images, you can use bitmaps for but-
ton pictures. Once a bitmap exists, all that needs to appear between
the BeginPicture() and EndPicture() calls is a call to the BView
member function DrawBitMap(). Chapter 10, Files, discusses bit-
maps.

Picture buttons are actually more versatile than described in this section. Here the
picture button is treated as a one-state device—just as a standard push button is.
The BPictureButton class can also be used, however, to create a picture button
that is a two-state control. Setting the behavior parameter to the constant B_TWO_
STATE_BUTTON tells the BPictureButton constructor to create a picture button
that, when clicked on, toggles between the two pictures represented by the
BPicture parameters off and on. Clicking on such a picture button displays one
picture. Clicking on the button again displays the second picture. The displayed
picture indicates to the user the current state of the button. To see a good real-
world use of a two-state picture button, run the BeIDE. Then choose Find from
the Edit menu. In the lower-left area of the Find window you’ll find a button that
has a picture of a small file icon on it. Click on the button and it will now have a
picture of two small file icons on it. This button is used to toggle between two
search options: search only the currently open, active file, and search all files
present in the Find window list. Figure 6-5 shows both of this button’s two states.

Picture Buttons 195

Picture Button Example Project

The PictureButton project creates a program that displays a window that holds a
single picture button. Figure 6-6 shows this one window under two different con-
ditions. The leftmost window in the figure shows the button in its normal state.
The rightmost window shows that when the button is clicked it gets slightly
smaller and its center is filled in.

The picture button can include other pictures, which will be used if
the program lets the button be disabled. Now that you know the
basics of working with the BPictureButton class, the details of
enhancing your picture buttons will be a quick read in the
BPictureButton section of the Interface Kit chapter of the Be
Book.

Figure 6-5. The Find window of the BeIDE provides an example of a picture button

Figure 6-6. The window that results from running the PictureButton program

The two states of the same
picture button

196 Chapter 6: Controls and Messages

Preparing the window class for the picture button

This chapter’s TwoButtons example project (presented in the “Buttons” section)
provided a plan for adding a control, and support of that control, to a window.
Here’s how the window class header file (the MyHelloWindow.h file for this
project) is set up for a new control:

• Define a constant to be used to represent an application-defined message type

• Override MessageReceived() in the window class declaration

• Add a control data member in the window class declaration

Here’s how the MyHelloWindow class is affected by the addition of a picture but-
ton to a window of this class type:

#define PICTURE_BEEP_MSG 'bep1'

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BPictureButton *fPicButtonBeep;
};

I’ve defined the PICTURE_BEEP_MSG constant to have a value of
'bep1'. Looking back at the TwoButtons example project, you’ll see
that this is the same value I gave to that project’s BUTTON_BEEP_1_
MSG constant. If both controls were present in the same application,
I’d give one of these two constants a different value so that the
MessageReceived() function could distinguish between a click on
the Beep One push button and a click on the picture button.

Creating the picture button

The process of creating a control can also be expressed in a number of steps. All
of the following affect the window source code file (the MyHelloWindow.cpp file
in this particular example):

• Declare and assign values to the variables to be used in the control’s con-
structor

• Create the control using new and the control’s constructor

• Attach the control to the window by adding it to one of the window’s views

Picture Buttons 197

Following the above steps to add a picture button to the MyHelloWindow con-
structor results in a new version of this routine that looks like this:

BRect pictureBeep1Rect(20.0, 60.0, 50.0, 90.0);
const char *pictureBeep1Name = "Beep1";

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 BPicture *buttonOffPict;
 BPicture *buttonOnPict;

 fMyView->BeginPicture(new BPicture);
 BRect offRect;

 offRect.Set(0.0, 0.0, 30.0, 30.0);
 fMyView->FillRect(offRect, B_SOLID_LOW);
 fMyView->StrokeRect(offRect, B_SOLID_HIGH);
 buttonOffPict = fMyView->EndPicture();

 fMyView->BeginPicture(new BPicture);
 BRect onRect;

 onRect.Set(0.0, 0.0, 30.0, 30.0);
 fMyView->StrokeRect(onRect, B_SOLID_LOW);
 offRect.InsetBy(2.0, 2.0);
 fMyView->StrokeRect(onRect, B_SOLID_HIGH);
 onRect.InsetBy(2.0, 2.0);
 fMyView->FillRect(onRect, B_SOLID_HIGH);
 buttonOnPict = fMyView->EndPicture();

 fPicButtonBeep = new BPictureButton(pictureBeep1Rect, pictureBeep1Name,
 buttonOffPict, buttonOnPict,
 new BMessage(PICTURE_BEEP_MSG));
 fMyView->AddChild(fPicButtonBeep);

 Show();
}

The two BPicture objects are defined using a few of the basic drawing tech-
niques covered in Chapter 5. As you read the following, refer back to the picture
button in its off state (normal, or unclicked) and on state (being clicked) in
Figure 6-5.

The off picture fills in a rectangle with the B_SOLID_LOW pattern (solid white) to
erase the on picture that might currently be displayed (if the user has just clicked

198 Chapter 6: Controls and Messages

the picture button, the on picture will be serving as the picture button). Then a
rectangle is outlined to serve as the off button.

The on picture erases the off picture (should it be currently drawn to the window
as the picture button) by drawing a white (B_SOLID_LOW) rectangle outline with
the boundaries of the off picture rectangle. That rectangle is then inset two pixels
in each direction and a new rectangle is framed in black (B_SOLID_HIGH). The
rectangle is then inset two more pixels, and this new area is filled with black.

Handling a picture button click

To handle a click on the picture button, MessageReceived() now looks for a
message of type PICTURE_BEEP_MSG. Should that message reach the window, the
computer sounds the system beep one time:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case PICTURE_BEEP_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Checkboxes
The BCheckBox class is used to add checkboxes to a window. A BCheckBox
object includes both the checkbox itself and a label, or title, to the right of the
box. A checkbox is a two-state control: in the on state, the checkbox has an “X” in
it; when off, it is empty. When a user clicks on a checkbox, its state is toggled. It’s
worthy of note that a checkbox label is considered a part of the checkbox con-
trol. That means that a user’s click on the checkbox itself or anywhere on the
checkbox label will toggle the checkbox to its opposite state.

Whether a click results in a checkbox being turned on (checked) or off
(unchecked), a message is sent to the window that holds the checkbox. While a
program can immediately respond to a click on a checkbox, it is more typical for
the program to wait until some other action takes place before responding. For
instance, the setting of some program feature could be done via a checkbox.
Clicking the checkbox wouldn’t, however, immediately change the setting. Instead,
when the user dismisses the window the checkbox resides in, the value of the
checkbox can be queried and the setting of the program feature could be per-
formed at that time.

Checkboxes 199

Creating a Checkbox

The BCheckBox constructor has six parameters:

BCheckBox(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BCheckBox parameters match those used in the BButton constructor—if you
know how to create a button, you know how to create a checkbox. Adding to the
similarities is that after you attach the checkbox to a window, the control’s height
will be automatically adjusted to accommodate the height of the text of the con-
trol’s label. If the values of the frame rectangle coordinates don’t produce a
rectangle with a height sufficient to display the checkbox label, the BCheckBox
constructor will increase the checkbox boundary rectangle height by increasing the
value of the frame rectangle’s bottom value. The exact height of the checkbox
depends on the font in which the control’s label is displayed.

As for other control types, you’ll define a message constant that is to be paired
with the control. For instance:

#define CHECKBOX_MSG 'ckbx'

Then, optionally, add a data member of the control type to the class declaration of
the window type the control is to be added to:

class MyWindow : public BWindow {
 ...
 private:
 BView *fView;
 BButton *fCheckBox;
}

The following snippet is typical of the code you’ll write to create a new checkbox
and add that control to a view:

BRect checkBoxRect(20.0, 20.0, 100.0, 50.0);

fCheckBox = new BCheckBox(checkBoxRect,"MyCheckbox"
 "Check Me", new BMessage(CHECKBOX_MSG));

fMyView->AddChild(fCheckBox);

Checkbox (Action Now) Example Project

Clicking a checkbox may have an immediate effect on some aspect of the pro-
gram, or it may not have an impact on the program until the user confirms the
checkbox selection—usually by a click on a button. The former use of a check-

200 Chapter 6: Controls and Messages

box is demonstrated in the example project described here: CheckBoxNow. For an
example of the other usage, a checkbox that has an effect after another action is
taken, look over the next example, the CheckBoxLater project.

The use of a checkbox to initiate an immediate action is often in practice when
some area of the window the checkbox resides in is to be altered. For instance, if
some controls in a window are to be rendered unusable in certain conditions, a
checkbox can be used to disable (and then later enable) these controls. This is
how the checkbox in the CheckBoxNow example works. The CheckBoxNow
project creates a program with a window that holds two controls: a button and a
checkbox. When the program launches, both controls are enabled, and the check-
box is unchecked—as shown in the top window in Figure 6-7. As expected, click-
ing on the Beep One button produces a single system beep. Clicking on the
checkbox disables beeping by disabling the button. The bottom window in
Figure 6-7 shows how the program’s one window looks after clicking the Disable
Beeping checkbox.

Preparing the Window class for the checkbox

The MyHelloWindow.h file prepares for the window’s support of a button and a
checkbox by defining a constant for each control’s message:

#define BUTTON_BEEP_1_MSG 'bep1'
#define CHECKBOX_SET_BEEP_MSG 'stbp'

The MyHelloWindow class now holds three data members:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;

Figure 6-7. The windows that result from running the CheckBoxNow program

Checkboxes 201

 BButton *fButtonBeep1;
 BCheckBox *fCheckBoxSetBeep;
};

Creating the checkbox

I’ve declared and initialized the button and checkbox boundary rectangles near
one another so that I could line them up—Figure 6-6 shows that the checkbox is
just to the right of the button and centered vertically with the button.

BRect buttonBeep1Rect(20.0, 60.0, 110.0, 90.0);
BRect checkBoxSetBeepRect(130.0, 67.0, 230.0, 90.0);
const char *buttonBeep1Name = "Beep1";
const char *checkBoxSetBeepName = "SetBeep";
const char *buttonBeep1Label = "Beep One";
const char *checkBoxSetBeepLabel = "Disable Beeping";

The MyHelloWindow constructor creates both the button and checkbox:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);

fCheckBoxSetBeep = new BCheckBox(checkBoxSetBeepRect, checkBoxSetBeepName,
 checkBoxSetBeepLabel,
 new BMessage(CHECKBOX_SET_BEEP_MSG));

 fMyView->AddChild(fCheckBoxSetBeep);

 Show();
}

Handling a checkbox click

When the checkbox is clicked, the system will toggle it to its opposite state and
then send a message of the application-defined type CHECKBOX_SET_BEEP_MSG to
the MyHelloWindow MessageReceived() routine. In response, this message’s
case section obtains the new state of the checkbox and enables or disables the
Beep One button as appropriate. If the Disable Beeping checkbox is checked, or
on, the button is disabled by passing a value of false to the button’s

202 Chapter 6: Controls and Messages

SetEnabled() routine. If the checkbox is unchecked, or off, a value of true is
passed to this same routine in order to enable the button:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 beep();
 break;

 case CHECKBOX_SET_BEEP_MSG:
 int32 checkBoxState;

 checkBoxState = fCheckBoxSetBeep->Value();

 if (checkBoxState == B_CONTROL_ON)
 // Disable Beeping checkbox is checked, deactivate beep button
 fButtonBeep1->SetEnabled(false);
 else
 // Disable Beeping checkbox is unchecked, activate beep button
 fButtonBeep1->SetEnabled(true);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Checkbox (Action Later) Example Project

The CheckBoxNow project responds immediately to a click on a checkbox. More
often, programs let users check or uncheck the checkboxes without any immedi-
ate effect. Thus, your program might reserve action until the choice is confirmed
by the user’s click on a button (such as OK, Done, or Accept). The CheckBox-
Later project demonstrates this approach. Figure 6-7 shows that the CheckBox-
Later program displays a window that looks similar to that displayed by the
CheckBoxNow program. The program differs in when the state of the checkbox is
queried by the program. In the CheckBoxLater program, clicking the Disable
Beeping checkbox any number of times has no immediate effect on the Beep One
button (in Figure 6-8, you see that the checkbox is checked, yet the button isn’t
disabled). It’s only when the user clicks the Beep One button that the program
checks to see if the Disable Beeping checkbox is checked. If it isn’t checked, the
button click plays the system beep. If it is checked, the button can still be clicked,
but no sound will be played.

The only changes that were made to the CheckBoxNow code to turn it into the
code for the CheckBoxLater project are in the MessageReceived() function.
Here’s how the new version of that routine looks:

Radio Buttons 203

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 int32 checkBoxState;

 checkBoxState = fCheckBoxSetBeep->Value();

 if (checkBoxState == B_CONTROL_ON)
 // Disable Beeping checkbox is checked, meaning DON'T beep
 ;
 else
 // Disable Beeping checkbox is unchecked, meaning DO beep
 beep();

 break;

 case CHECKBOX_SET_BEEP_MSG:
 // Here we don't do anything. Instead, we wait until the user
 // performs some other action before checking the value of the
 // checkbox break;

 default:
 BWindow::MessageReceived(message);
 }
}

In MessageReceived(), the body of the CHECKBOX_SET_BEEP_MSG case section
performs no action—a message of this type is now essentially ignored. The pro-
gram would run the same even if this case section was removed, but I’ve left the
CHECKBOX_SET_BEEP_MSG case label in the switch so that it’s evident that
MessageReceived() is still the recipient of such messages.

Radio Buttons
A radio button is similar to a checkbox in that it is a two-state control. Unlike a
checkbox, though, a radio button always appears grouped with at least one other
control of its kind.

Figure 6-8. The window that results from running the CheckBoxLater program

204 Chapter 6: Controls and Messages

For any given radio button group, no more than one radio button can be on at
any time. When the user clicks on one button in a group, the button that was on
at the time of the click is turned off and the newly clicked button is turned on. A
radio button group is responsible for updating the state of its buttons—your code
won’t need to turn them on and off.

Creating a Radio Button

The BRadioButton constructor has the same six parameters described back in this
chapter’s “The BControl class” section:

BRadioButton(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

Like other types of controls, a radio button’s height will be adjusted if the height
specified in the frame rectangle isn’t enough to accommodate the font being used
to display the radio button’s label.

Before creating a new radio button, define a constant to be used as the control’s
message type. Here’s an example from a project that has two radio buttons in a
window:

#define RADIO_1_MSG 'rad1'
#define RADIO_2_MSG 'rad2'

Access to a radio button is easiest if a data member of the control type is added to
the class declaration of the window type the control is to be added to:

class MyWindow : public BWindow {
 ...
 private:
 BView *fView;
 BRadioButton *fRadio1;
 BRadioButton *fRadio2;
}

The following snippet shows the creation of two radio buttons, each of which is
added to the same view:

BRect radio1Rect(20.0, 20.0, 100.0, 49.0);
BRect radio2Rect(20.0, 50.0, 100.0, 79.0);

fRadio1 = new BRadioButton(radio1Rect, "MyRadio1",
 "One", new BMessage(RADIO_1_MSG));
fMyView->AddChild(fRadio1);

Radio Buttons 205

fRadio2 = new BRadioButton(radio2Rect, "MyRadio2",
 "Two", new BMessage(RADIO_2_MSG));
fMyView->AddChild(fRadio2);

By adding radio buttons to the same view, you designate that the buttons be con-
sidered a part of a radio button group. The simple act of placing a number of but-
tons in the same view is enough to have these buttons act in unison. A click on
one radio button turns that button on, but not until that button turns off all other
radio buttons in the same view.

A single window can have any number of radio button groups, or sets. For
instance, a window might have one group of three buttons that provides the user
with the option of displaying graphic images in monochrome, grayscale, or color.
This same window could also have a radio button group that provides the user
with a choice of four filters to apply to the image. In such a scenario, the window
would need to include a minimum of two views—one for the group of three
color-level radio buttons and another for the group of four filter radio buttons.

Radio Buttons Example Project

The RadioButtonGroup project demonstrates how to create a group of radio but-
tons. As shown in Figure 6-9, the RadioButtonGroup program’s window includes a
group of three radio buttons that allow the user to alter the behavior of the Beep
push button.

Preparing the window class for the radio buttons

The MyHelloWindow.h header file includes four control message constants—one
per control. The push button constant has been given the value 'bEEp' just to
illustrate that an application-defined message constant can include uppercase char-
acters (to avoid conflicting with Be-defined control message constants, it just
shouldn’t consist of all uppercase characters).

#define BUTTON_BEEP_1_MSG 'bEEp'
#define RADIO_BEEP_1_MSG 'bep1'

Figure 6-9. The window that results from running the RadioButtonGroup program

206 Chapter 6: Controls and Messages

#define RADIO_BEEP_2_MSG 'bep2'
#define RADIO_BEEP_3_MSG 'bep3'

This project’s version of the MyHelloWindow class includes six data members: one
to keep track of the window’s view, one to keep track of each of the window’s
four controls, and one to keep track of the number of beeps to play when the
push button is clicked:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BRadioButton *fRadioBeep1;
 BRadioButton *fRadioBeep2;
 BRadioButton *fRadioBeep3;
 int32 fNumBeeps;
};

Laying out the radio buttons

A number of radio buttons are defined as a group when they all reside in the same
view. A MyHelloWindow object includes a view (MyDrawView) that occupies its
entire content area—so I could add the three radio buttons to this view and have
them automatically become a radio button group. That, however, isn’t what I’m
about to do. Instead, I’ll create a new view and add it to the existing view. If at a
later time I want to add a second group of radio buttons (to control some other,
unrelated, option) to the window, the buttons that will comprise that group will
need to be in a new view—otherwise they’ll just be absorbed into the existing
radio button group. By creating a new view that exists just for one group of radio
buttons, I’m getting in the habit of setting up a radio button group as an isolated
entity.

Placing a radio button group in its own new view also proves beneficial if it
becomes necessary to make a change to the layout of all of the group’s radio but-
tons. For instance, if I want to relocate all of the buttons in a group to another
area of the window, I just redefine the group’s view rectangle rather than redefin-
ing each of the individual radio button boundary rectangles. When the view
moves, so do the radio buttons in it. Or, consider that I may, for aesthetic rea-
sons, want to outline the area that holds the radio buttons. I can easily do so by
framing the radio button group view.

Radio Buttons 207

The following variable declarations appear near the top of the MyHelloWindow.
cpp file. Note that the boundary rectangle for each of the three radio buttons has a
left coordinate of 10.0, yet the radio buttons are certainly more than 10 pixels in
from the left side of the window.

Keep in mind that after being created, the radio buttons will be added to a new
BView that is positioned in the window based on the radioGroupRect rectangle.
Thus, the coordinate values of the radio button rectangles are relative to the new
BView. Figure 6-10 clarifies my point by showing where the radio group view will
be placed in the window. In that figure, the values 125 and 50 come from the left
and top values in the radioGroupRect rectangle declared here:

BRect radioGroupRect(125.0, 50.0, 230.0, 120.0);

BRect radioBeep1Rect(10.0, 5.0, 90.0, 25.0);
BRect radioBeep2Rect(10.0, 26.0, 90.0, 45.0);
BRect radioBeep3Rect(10.0, 46.0, 90.0, 65.0);
const char *radioBeep1Name = "Beep1Radio";
const char *radioBeep2Name = "Beep2Radio";
const char *radioBeep3Name = "Beep3Radio";
const char *radioBeep1Label = "One Beep";
const char *radioBeep2Label = "Two Beeps";
const char *radioBeep3Label = "Three Beeps";

Creating the radio buttons

The three radio buttons are created, as expected, in the MyHelloWindow construc-
tor. Before doing that, a generic view (a view of the Be class BView) to which the
radio buttons will be added is created and added to the view of type MyDrawView.
By default, each new radio button is turned off. A group of radio buttons must
always have one button on, so after the three radio buttons are created, one of
them (arbitrarily, the One Beep button) is turned on by calling the button’s
SetValue() member function. The data member fNumBeeps is then initialized to
a value that matches the number of beeps indicated by the turned-on radio button:

Figure 6-10. A group of radio buttons can reside in their own view

50

125

208 Chapter 6: Controls and Messages

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);

 BView *radioGroupView;

 radioGroupView = new BView(radioGroupRect, "RadioView",
 B_FOLLOW_ALL, B_WILL_DRAW);
 fMyView->AddChild(radioGroupView);

 fRadioBeep1 = new BRadioButton(radioBeep1Rect, radioBeep1Name,
 radioBeep1Label,
 new BMessage(RADIO_BEEP_1_MSG));

 radioGroupView->AddChild(fRadioBeep1);

 fRadioBeep2 = new BRadioButton(radioBeep2Rect, radioBeep2Name,
 radioBeep2Label,
 new BMessage(RADIO_BEEP_2_MSG));

 radioGroupView->AddChild(fRadioBeep2);

 fRadioBeep3 = new BRadioButton(radioBeep3Rect, radioBeep3Name,
 radioBeep3Label,
 new BMessage(RADIO_BEEP_3_MSG));

 radioGroupView->AddChild(fRadioBeep3);

 fRadioBeep1->SetValue(B_CONTROL_ON);
 fNumBeeps = 1;

 Show();
}

Handling a radio button click

When a radio button is clicked, a message of the appropriate application-defined
type reaches the window’s MessageReceived() function. The clicking of a radio
button, like the clicking of a checkbox, typically doesn’t cause an immediate
action to occur. Such is the case in this example. MessageReceived() handles
the button click by simply setting the MyHelloWindow data member fNumBeeps to
the value indicated by the clicked-on radio button. When the user eventually clicks
on the Beep push button, beep() is invoked the appropriate number of times:

Radio Buttons 209

void MyHelloWindow::MessageReceived(BMessage* message)
{
 bigtime_t microseconds = 1000000; // one second

 switch(message->what)
 {
 case RADIO_BEEP_1_MSG:
 fNumBeeps = 1;
 break;

 case RADIO_BEEP_2_MSG:
 fNumBeeps = 2;
 break;

 case RADIO_BEEP_3_MSG:
 fNumBeeps = 3;
 break;

 case BUTTON_BEEP_MSG:
 int32 i;

 for (i = 1; i <= fNumBeeps; i++) {
 beep();
 if (i != fNumBeeps)
 snooze(microseconds);
 }
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

View Hierarchy and Controls

Chapter 4 introduced the concept of the window view hierarchy—the organiza-
tion of views within a window. In this chapter’s most recent example you’ve just
seen a window that included a number of views (keeping in mind that a control is
a type of view). Now that you’ve encountered the first example that includes sev-
eral views, this a good time to revisit the topic of the view hierarchy in order to fill
in some of the details. Figure 6-11 shows the view hierarchy for a window—an
object of the MyHelloWindow class—from the RadioButtonGroup program.

Adding views to the hierarchy

A window’s top view is always a “built-in” part of the window—you don’t explic-
itly add the top view as you add other views. The BView-derived fMyView view
lies directly below the top view, telling you that this view has been added to the
window. The BButton fButtonBeep1 view and the BView radioGroupView lie
directly below the fMyView view, so you know that each has been added to

210 Chapter 6: Controls and Messages

fMyView. Finally, the three BRadioButton views are beneath radioGroupView,
telling you that these three views have been added to radioGroupView. You can
confirm this by looking at the six AddChild() calls in the MyHelloWindow con-
structor—they indicate which parent view each view was added to:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 ...
 AddChild(fMyView);
 ...
 fMyView->AddChild(fButtonBeep1);
 ...
 fMyView->AddChild(radioGroupView);
 ...
 radioGroupView->AddChild(fRadioBeep1);
 ...
 radioGroupView->AddChild(fRadioBeep2);
 ...
 radioGroupView->AddChild(fRadioBeep3);
 ...
}

Accessing views

The names of the views in Figure 6-12 tell you how each view is referenced.

You don’t draw to the top view—it merely serves as a container for organizing
other views. To reference this view (as when adding a view to the window), refer-
ence the window itself. In the window’s constructor, just call the desired BWindow
member function, as in:

AddChild(fMyView);

Figure 6-11. The view hierarchy for the RadioButtonGroup window

Top View

fmyView

fButtonBeep1 radioGroupView

fRadioBeep2fRadioBeep1 fRadioBeep3

Radio Buttons 211

From outside a window member function, use the fMyWindow data member from
the MyHelloApplication object. If the fMyView view was to be added in the
BApplication constructor after the window was created, the call to AddChild()
would look like this:

fMyWindow->AddChild(fMyView);

The Be naming convention states that the name of a class data member should
start with a lowercase “f” character. In Figure 6-11 you see that five of the six
views below the top view are referenced by data members. To work with any one
of these views, use the data member that references it. For instance, to invoke the
BView member function FillRect() to fill a rectangle in the window’s fMyView
view, just call the routine like this:

fMyView->FillRect(aRect);

I haven’t kept a data member reference in the MyHelloWindow class to the BView
that groups the three radio buttons. If it became necessary to reference this view,
you could call the BView member function FindView() to locate the view object
and return a reference to it. Recall that when a view is created, you give it a name.
For example, the radio group view was given the name “RadioView”:

radioGroupView = new BView(radioGroupRect, "RadioView", B_FOLLOW_ALL,
 B_WILL_DRAW);
fMyView->AddChild(radioGroupView);

You can find the view at any time by calling FindView() from the parent view.
For instance, to fill a rectangle in the radio group view, call FindView() from that
view’s parent view, fMyView:

BView *aView;

aView = fMyView->FindView("RadioView");
aView->FillRect(aRect);

Keep in mind that there are always two, and may be three, refer-
ences, associated with one view. When a view is created, the view
object is returned to the program and referenced by a variable (such
as radioGroupView in the preceding example). When invoking the
BView (or BView-derived) class constructor, a name for the view is
supplied in quotes (as in “RadioView” in the preceding example).
Finally, some views have a label—a name that is displayed on the
view itself (as in a control such as a BButton—the button displays a
name such as OK or Beep).

212 Chapter 6: Controls and Messages

View Updating

In the RadioButtonGroup project, the MyHelloWindow constructor creates a view
referenced by the MyHelloWindow data member fMyView and a view referenced
by the local BView variable radioGroupView. This one MyHelloWindow construc-
tor shows two ways of working with views, so it will be worth our while to again
sidetrack from the discussion of controls in order to gain a better understanding of
the very important topic of views.

BView-derived classes and the generic BView class

In the RadioButtonGroup project, and several projects preceding it, I’ve opted to
fill the content area of a window with a view of the application-defined BView-
derived class MyDrawView. One of the chief reasons for defining such a class is to
let the system become responsible for updating a view. This is accomplished by
having my own class override the BView member function Draw().

A second way to work with a view is to not define a view class, but instead sim-
ply create a generic BView object within an application-derived routine. That’s
what the RadioButtonGroup project does in the MyHelloWindow constructor:

radioGroupView = new BView(radioGroupRect, "RadioView", B_FOLLOW_ALL,
 B_WILL_DRAW);

After you attach the new view to an existing view, drawing can take place in the
new view. For instance, if in addition to beeping, you want the program to draw a
border around the three radio buttons in response to a click on the window’s one
push button, add the following code under the BUTTON_BEEP_MSG case label in
the MessageReceived() function:

BView *radioView;
BRect radioFrame;

radioView = fMyView->FindView("RadioView");
radioFrame = radioView->Bounds();
radioView->StrokeRect(radioFrame);

Superficially, this approach of creating a generic BView and then drawing in it is
simpler than defining a BView-derived class and then implementing a Draw()
function for that class. But in taking this easier approach, you lose the benefit of
having the system take responsibility for updating the view. Consider the above
snippet. That code will nicely frame the three radio buttons. But if the window
that holds the buttons ever needs updating (and if the user is allowed to move the
window, of course at some point it will), the frame that surrounds the buttons
won’t be redrawn. The system will indeed invoke a Draw() function for
radioGroupView, but it will be the empty BView version of Draw().

Radio Buttons 213

Implementing a BView-derived class in the RadioButtonGroup project

What if I do want my RadioButtonGroup program to frame the radio buttons, and
to do so in a way that automatically updates the frame as needed? Instead of plac-
ing the radio buttons in a generic BView object, I can define a new BView-derived
class just for this purpose:

class MyRadioView : public BView {

 public:
 MyRadioView(BRect frame, char *name);
 virtual void Draw(BRect updateRect);
};

The MyRadioView constructor can be empty—just as the MyDrawView constructor
is:

MyRadioView::MyRadioView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

 The MyRadioView version of the Draw() function is quite simple as well:

void MyRadioView::Draw(BRect)
{
 BRect frame = Bounds();

 StrokeRect(frame);
}

While I could keep track of an instance of the MyRadioView class by calling the
parent view’s FindView() function as needed, I’d opt for the method of storing a
reference to the view in the window that will hold the view. Here I’ve added such
a reference to the six existing data members in the MyHelloWindow class of the
RadioButtonGroup project:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BRadioButton *fRadioBeep1;
 BRadioButton *fRadioBeep2;
 BRadioButton *fRadioBeep3;
 int32 fNumBeeps;
 MyRadioView *fMyRadioView;
};

214 Chapter 6: Controls and Messages

To create a MyRadioView object, I replace the generic BView creation code in the
MyHelloWindow constructor with the following:

fMyRadioView = new MyRadioView(radioGroupRect, "RadioView");
fMyView->AddChild(fMyRadioView);

Now, when a radio button is created, I add it to the MyRadioView object
fMyRadioView, like this:

fRadioBeep1 = new BRadioButton(radioBeep1Rect, radioBeep1Name,
 radioBeep1Label,
 new BMessage(RADIO_BEEP_1_MSG));

fMyRadioView ->AddChild(fRadioBeep1);

Thanks to the Draw() function of the MyRadioView class, the new radio button
group will have a border drawn around it, exactly as was shown back in
Figure 6-10. Better yet, obscuring the window and then bringing it back to the
forefront doesn’t cause the border to disappear—the update message that the
Application Server sends to the MyHelloWindow window results in the calling of
the Draw() function of each “out-of-date” view in the window.

If you want to see all of the code for this new version of the RadioButtonGroup
program, you’ll find it in the RadioButtonGroupFrame project.

If you’ve followed this discussion, you should be able to quickly
answer the following question: in the original RadioButtonGroup
project, why didn’t I create a new BView-derived class like the
MyRadioView class and use an object of that type to hold the radio
buttons? Answer: because I use the radio button view only as a
means to group the radio buttons together—I don’t draw to the
view. The simple approach of creating a BView on the fly works for
that purpose.

Text Fields
The BTextControl class is used to add a text field to a window. A text field con-
sists of both a static, uneditable label and an editable field that allows the user to
enter a single line of text. The label appears to the left of the editable field, and is
generally used to provide the user with an idea of what to enter in the editable
field (“Enter your age in years:” is an example).

A text field is often handled like a checkbox or radio button: no immediate action
is taken by the program in response to the user’s action. Typically, the program

Text Fields 215

acquires the text in the text field only when a button labeled OK, Accept, Save, or
something similar is clicked on.

If your program needs to get or set the editable text of a text field as soon as the
user has finished typing, the BTextControl accommodates you. Like other con-
trols, a text field issues a message that will be received by the
MessageReceived() function of the control’s window. Such a message is sent
when the control determines that the user has finished entering text in the edit-
able field, as indicated by a press of the Enter, Return, or Tab key or a mouse but-
ton click in the editable field of a different text field control. In all of these
instances, the text that was previously in the editable field must have been modi-
fied in order for the control to send the message. If the user, say, clicks in an edit-
able field of a text field, then presses the Enter key, no message will be sent.

Creating a Text Field

The BTextControl constructor has six parameters common to all controls, along
with a text parameter that specifies a string that is to initially appear in the edit-
able field of the text field control:

BTextControl(BRect frame,
 const char *name,
 const char *label,
 const char *text,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

Passing a string in the text parameter of the BTextControl constructor is useful
if you want to alert the user that a default string or value is to be used in the event
that the user doesn’t enter a string or value. If a value of NULL is passed as the
text parameter, no text initially appears in the editable field.

As with all control types, you must define a unique message constant that will be
paired with the control. To assist in keeping track of the text field control, you can
optionally include a data member in the window class in which the control is to
reside:

#define TEXT_FIELD_MSG 'txtf'

class MyWindow : public BWindow {
 ...
 private:
 BView *fView;
 BTextControl *fTextField;
}

216 Chapter 6: Controls and Messages

To create the control, pass the BTextControl constructor a boundary rectangle,
name, static text label, initial editable text, and a new BMessage object. Then add
the new text field to the view the control will reside in:

BRect textFieldRect(20.0, 20.0, 120.0, 50.0);

fTextField = new BTextControl(textFieldRect, "TextField",
 "Number of dependents:", "0",
 new BMessage(TEXT_FIELD_MSG));

fMyView->AddChild(fTextField);

Getting and Setting the Text

After creating a text field control, your program can obtain or set the editable field
text at any time. To obtain the text currently in the text field, invoke the
BTextControl member function Text(). Here, the text in a control is returned to
the program and saved to a string named textFieldText:

char *textFieldText;

textFieldText = fTextField->Text();

The text that appears in the editable field of the control is initially set in the
BTextControl constructor, and is then edited by the user. The contents of the
editable field can also be set at any time by your program by invoking the
BTextControl member function SetText(). This routine overwrites the current
contents of the editable field with the string that was passed to SetText(). Here
the current contents of a control’s editable field are obtained and checked for
validity. If the user-entered string isn’t consistent with what’s expected, the string
“Invalid Entry” is written in place of the incorrect text the user entered:

char *textFieldText;
bool textValid;

textFieldText = fTextField->Text();
...
// check for validity of user-entered text that's now held in textFieldText
...
if (!textValid)
 fTextField->SetText("Invalid Entry");

Reproportioning the Static Text and Editable
Text Areas

The label parameter specifies the static text that is to appear to the left of the
editable field. If NULL is passed here, all of the control’s boundary rectangle (as
defined by the frame parameter) is devoted to the text field. Any label string
other than NULL tells the constructor to devote half the width of the frame

Text Fields 217

rectangle to the static text label and the other half of this rectangle to the editable
text area. Consider this snippet:

BRect textFieldRect(20.0, 60.0, 220.0, 90.0);

fTextField = new BTextControl(textFieldRect, "TextField",
 "Name:", "George Washington Carver",
 new BMessage(TEXT_FIELD_MSG));

fMyView->AddChild(fTextField);

In this code, a text field control with a width of 200 pixels is created. By default,
the static text field and the editable text field of the control each have a width that
is one-half of the control’s boundary rectangle, or 100 pixels. The result is shown
in the top window in Figure 6-12. Because the label is a short string, and because
the value that might be entered in the editable text field may be a long string, it
would make sense and be more aesthetically pleasing to change the proportions
of the two text areas. Instead of devoting 100 pixels to the static text label
“Name:”, it would be better to give that text just, say, 35 pixels of the 200 pixels
that make up the control’s width. Such reproportioning is possible using the
BTextControl member function SetDivider().

When passed a floating-point value, SetDivider() re-establishes the dividing
point between the two text areas of a text field control. SetDivider() uses the
BTextControl object’s local coordinate system (meaning that the left edge of the
text edit control has a value of 0.0, regardless of where the control is positioned in
a window). The following addition to the above snippet changes the ratio to 35
pixels for the static text field and 165 pixels for the editable text field. The bottom
window in Figure 6-12 shows the result. Notice that the placement and overall
width of the control are unaffected by the call to SetDivider().

Figure 6-12. The two areas of a text field control can be proportioned in different ways

218 Chapter 6: Controls and Messages

float xCoordinate = 35.0;

fTextField->SetDivider(xCoordinate);

Text Field Example Project

The TextField project demonstrates how to include a text field in a window, obtain
that control’s user-entered string, and make use of that string elsewhere. When the
user clicks the window’s button, the program gets the string from the text field and
uses that string as the new label for the push button. Figure 6-13 shows the pro-
gram’s window after the button has been clicked.

Preparing the window class for the text field

The MyHelloWindow.h header file is edited to include a control message constant
for the window’s two controls.

#define BUTTON_BEEP_1_MSG 'bep1'
#define TEXT_NEW_TITLE_MSG 'newT'

To keep track of the window’s views, the MyHelloWindow class now holds three
data members:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BTextControl *fTextNewTitle;
};

Figure 6-13. The window that results from running the TextField program

Text Fields 219

Creating the text field

The text field and button information are defined together just before the imple-
mentation of the MyHelloWindow constructor. The push button label will initially
be “Beep One” and the text that will appear initially in the editable field of the text
field control is the string “Beep Me!”:

BRect buttonBeep1Rect(20.0, 105.0, 110.0, 135.0);
BRect textNewTitleRect(20.0, 60.0, 260.0, 90.0);
const char *buttonBeep1Name = "Beep1";
const char *textNewTitleName = "TextTitle";
const char *buttonBeep1Label = "Beep One";
const char *textNewTitleLabel = "Enter New Button Name:";
const char *textNewTitleText = "Beep Me!";

The MyHelloWindow constructor creates the window’s main view, then creates
and adds the button control and text field control to that view:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);

 fTextNewTitle = new BTextControl(textNewTitleRect, textNewTitleName,
 textNewTitleLabel, textNewTitleText,
 new BMessage(TEXT_NEW_TITLE_MSG));

 fMyView->AddChild(fTextNewTitle);

 Show();
}

Handling a text field entry and a button click

A program can make use of a text field control in two ways. First, a window can
obtain the user-entered text from a text field control at any time—without regard
for whether the text field has issued a message. Second, a window can await a
message sent by the text field and then respond. The MessageReceived() func-
tion demonstrates both these options.

When the window’s push button is clicked, the window receives a message from
the button. At that time, the editable text of the text field control is retrieved and
used in a call to the button’s SetLabel() function. While the retrieving of the text

220 Chapter 6: Controls and Messages

field control’s editable text takes place in response to a message, that message is
one issued by the push button—not the text field control.

When the user clicks in the text field, that control becomes the focus view. Recall
from Chapter 4 that a window can have only one focus view, and that view
becomes the recipient of keystrokes. Once a text field is the focus view (as indi-
cated by the editable text field being highlighted and the I-beam appearing in it),
and once that control’s editable text has been altered in any way, the control is
capable of sending a message. That happens when the user presses the Return,
Enter, or Tab key. In response to a message sent by the text field control,
MessageReceived() resets the push button’s label to its initial title of “Beep One”
(as defined by the buttonBeep1Label constant):

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 char *textFieldText;

 textFieldText = fTextNewTitle->Text();
 fButtonBeep1->SetLabel(textFieldText);
 beep();
 break;

 case TEXT_NEW_TITLE_MSG:
 fButtonBeep1->SetLabel(buttonBeep1Label);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Multiple Control Example Project
The numerous example projects in this chapter demonstrated how to incorporate
one, or perhaps two, types of controls in a window. Your real-world program
might very well include numerous controls. ControlDemo is such a program—its
one window holds the six controls shown in Figure 6-14.

To use ControlDemo, enter a number in the range of 1 to 9 in the text field con-
trol, click a radio button control to choose one of three drawing colors, then click
the Draw button. The ControlDemo program responds by drawing colored, over-
lapping circles. The number of circles drawn is determined by the value entered in
the text field. Before drawing the circles, ControlDemo erases the drawing area—
so you can try as many combinations of circles and colors as you want. You can

Multiple Control Example Project 221

also click the Disable colors checkbox to disable the radio buttons and force draw-
ing to take place in the last selected color.

Preparing the Window Class for the Controls

The program’s window holds six controls, so you can expect to see six applica-
tion-defined message constants in the MyHelloWindow.h file:

#define BUTTON_DRAW_MSG 'draw'
#define RADIO_RED_MSG 'rred'
#define RADIO_GREEN_MSG 'rgrn'
#define RADIO_BLACK_MSG 'rblk'
#define TEXT_NUM_CIRCLES_MSG 'crcl'
#define CHECKBOX_SET_COLOR_MSG 'setc'

Each control is kept track of by a data member in the MyHelloWindow class.
There’s also the familiar data member that exists to keep track of the window’s
main view:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BTextControl *fTextNumCircles;
 BCheckBox *fCheckBoxSetColor;
 BRadioButton *fRadioRed;
 BRadioButton *fRadioGreen;
 BRadioButton *fRadioBlack;
 BButton *fButtonDraw;
};

Figure 6-14. The window that results from running the ControlDemo program

222 Chapter 6: Controls and Messages

Creating the Controls

All of the variables that are to be used as arguments to the control constructors are
declared together in MyHelloWindow.cpp. Each of the controls is then created in
the MyHelloWindow constructor. There are no surprises here—just use new with
the appropriate control constructor and assign the resulting object to the proper
MyHelloWindow data member.

You should be quite familiar with this process by now. To see the complete
MyHelloWindow constructor listing, refer to MyHelloWindow.cpp.

Handling the Messages

All application-defined control messages are handled in the body of the switch
statement in MessageReceived(). The checkbox message is handled by first
checking the control’s value, then disabling or enabling the three radio buttons as
appropriate:

case CHECKBOX_SET_COLOR_MSG:
 int32 checkBoxState;

 checkBoxState = fCheckBoxSetColor->Value();
 if (checkBoxState == B_CONTROL_ON) {
 fRadioRed->SetEnabled(false);
 fRadioGreen->SetEnabled(false);
 fRadioBlack->SetEnabled(false);
 }
 else {
 fRadioRed->SetEnabled(true);
 fRadioGreen->SetEnabled(true);
 fRadioBlack->SetEnabled(true);
 }
 break;

Each of the radio buttons does nothing more than set the high color to an RGB
color that matches the button’s label:

case RADIO_RED_MSG:
 fMyView->SetHighColor(255, 0, 0, 255);
 break;

case RADIO_GREEN_MSG:
 fMyView->SetHighColor(0, 255, 0, 255);
 break;

case RADIO_BLACK_MSG:
 fMyView->SetHighColor(0, 0, 0, 255);
 break;

Multiple Control Example Project 223

Clicking the Draw button results in a number of colored circles being drawn. Here
the text field value is obtained to see how many circles to draw, and the high
color is used in the drawing of those circles. Before drawing the circles, any old
drawing is erased by whiting out an area of the window that is at least as big as
the drawing area:

case BUTTON_DRAW_MSG:
 int32 numCircles;
 int32 i;
 BRect areaRect(160.0, 70.0, 270.0, 180.0);
 BRect circleRect(160.0, 70.0, 210.0, 120.0);
 const char *textFieldText;

 textFieldText = fTextNumCircles->Text();
 numCircles = (int32)textFieldText[0] - 48;

 if ((numCircles < 1) || (numCircles > 9))
 numCircles = 5;

 fMyView->FillRect(areaRect, B_SOLID_LOW);

 for (i=1; i<=numCircles; i++) {
 fMyView->StrokeEllipse(circleRect, B_SOLID_HIGH);
 circleRect.OffsetBy(4.0, 4.0);
 }
 break;

The text field message is completely ignored. The program obtains the editable
text when the user clicks the Draw button. As written, the program checks the text
field input to see if the user entered a numeric character in the range of 1 to 9. If
any other value (or character or string) has been entered, the program arbitrarily
sets the number of circles to draw to five. This is a less-than-perfect way of doing
things in that it allows the user to enter an invalid value. One way to improve the
program would be to have the program react to a text field control message. That
type of message is delivered to MessageReceived() when the user ends a typ-
ing session (that is, when the user clicks elsewhere, or presses the Enter, Return,
or Tab key). MessageReceived() could then check the user-entered value and, if
invalid, set the editable text area to a valid value (and, perhaps, post a window
that informs the user what has taken place).

Modifying the ControlDemo Project

What the program draws isn’t important to the demonstration of how to include a
number of controls in a window. With the graphics information found in Chapter 4
you should be able to modify ControlDemo so that it draws something far more
interesting. Begin by enlarging the window so that you have some working room.
In the MyHelloWorld.cpp file, change the size of the BRect passed to the

224 Chapter 6: Controls and Messages

MyHelloWindow constructor. Here I’m setting the window to have a width of 500
pixels and a height of 300 pixels:

aRect.Set(20, 30, 520, 430);
fMyWindow = new MyHelloWindow(aRect);

Limiting drawing to only three colors isn’t a very user-friendly thing to do, so your
next change might be to include a BColorControl object that lets the user
choose any of the 256 system colors. The details of working with a color control
were covered back in Chapter 5. Recall that you can easily support this type of
control by first adding a BColorControl data member to the MyHelloWindow
class:

class MyHelloWindow : public BWindow {
 ...
 ...
 BColorControl *fColorControl;
};

Then, in the MyHelloWindow constructor, create the control and add it to the win-
dow. You’ll need to determine the appropriate coordinates for the BPoint and a
suitable Be-defined constant for the color_control_layout in order to position
the color control in the window you’re designing:

BPoint leftTop(20.0, 50.0);
color_control_layout matrix = B_CELLS_4x64;
long cellSide = 16;

fColorControl = new BColorControl(leftTop, matrix, cellSide, "ColorControl");
AddChild(fColorControl);

Finally, when it comes time to draw, check to see which color the user has
selected from the color control. You can do that when the user clicks the Draw
button:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_DRAW_MSG:
 rgb_color userColorChoice;

 userColorChoice = fColorControl->ValueAsColor();
 SetHighColor(userColorChoice);

 // now load up this section with plenty of graphics-drawing code
 break;

 ...
 ...

 default:

Multiple Control Example Project 225

 BWindow::MessageReceived(message);
 }
}

Now, review Chapter 4 to come up some ideas for drawing some really interest-
ing graphics. Then add them under the BUTTON_DRAW_MSG case label in
MessageReceived()!

226

Chapter 7

In this chapter:
• Menu Basics
• Working with Menus
• Multiple Menus
• Pop-up Menus
• Submenus

7
Menus 7.

Menus are the interface between the user and the program, and are the primary
means by which a user carries out tasks. A Be program that makes use of menus
usually places a menubar along the top of the content area of each application
window—though it’s easy enough to instead specify that a menubar appear else-
where in a window.

A menu is composed of menu items, and resides in a menubar. You’ll rely on the
BMenuBar, BMenu, and BMenuItem classes to create menubar, menu, and menu
item objects. Early in this chapter, you’ll see how to create objects of these types
and how to interrelate them to form a functioning menubar. After these menubar
basics are described, the chapter moves to specific menu-related tasks such as
changing a menu item’s name during runtime and disabling a menu item or entire
menu.

To offer the user a number of related options, create a single menu that allows
only one item to be marked. Such a menu is said to be in radio mode, and places
a checkmark beside the name of the most recently selected item. If these related
items all form a subcategory of a topic that is itself a menu item, consider creating
a submenu. A submenu is a menu item that, when selected, reveals still another
menu. Another type of menu that typically holds numerous related options is a
pop-up menu. A pop-up menu exists outside of a menubar, so it can be placed
anywhere in a window. You’ll find all the details of how to put a menu into radio
mode, create a submenu, and create a pop-up menu in this chapter.

Menu Basics
A Be application can optionally include a menubar within any of its windows, as
shown in Figure 7-1. In this figure, a document window belonging to the

Menu Basics 227

StyledEdit program includes a menubar that holds four menus. As shown in the
Font menu, a menu can include nested menus (submenus) within it.

Menus can be accessed via the keyboard rather than the mouse. To make the
menubar the focus of keyboard keystrokes, the user presses both the Command
and Escape keys. Once the menubar is the target of keystrokes, the left and right
arrow keys can be used to drop, or display, a menu. Once displayed, items in a
menu can be highlighted using the up and down arrow keys. The Enter key
selects a highlighted item.

A second means of navigating menus and choosing menu items from the key-
board is through the use of triggers. One character in each menu name and in
each menu item name is underlined. This trigger character is used to access a
menu or menu item. After making the menubar the focus of the keyboard, press-
ing a menu’s trigger character drops that menu. Pressing the trigger character of an
item in that menu selects that item.

The topics of menubars, menus, and menu items are intertwined in such a way
that moving immediately into a detailed examination of each in turn doesn’t make
sense. Instead, it makes more sense to conduct a general discussion of menu
basics: creating menu item, menu, and menubar objects, adding menu item objects
to a menu object, and adding a menu object to a menubar. That’s what takes place
on the next several pages. Included are a couple of example projects that include
the code to add a simple menubar to a window. With knowledge of the interrela-
tionship of the various menu elements, and a look at the code that implements a
functional menubar with menus, it will be appropriate to move on to studies of
the individual menu-related elements.

Figure 7-1. An application window can have its own menubar

228 Chapter 7: Menus

Adding a Menubar to a Window

The menubar, menu, and menu item are represented by objects of type BMenuBar,
BMenu, and BMenuItem, respectively. To add these menu-related elements to your
program, carry out the following steps:

1. Create a BMenuBar object to hold any number of menus.

2. Add the BMenuBar object to the window that is to display the menu.

3. For each menu that is to appear in the menubar:

a. Create a BMenu object to hold any number of menu items.

b. Add the BMenu object to the menubar that is to hold the menu.

c. Create a BMenuItem object for each menu item that is to appear in the
menu.

A menubar must be created before a menu can be added to it, and a menu must
be created before a menu item can be added to it. However, the attaching of a
menubar to a window and the attaching of a menu to a menubar needn’t follow
the order shown in the above list. For instance, a menubar, menu, and several
menu items could all be created before the menu is added to a menubar.

When an example project in this book makes use of a menubar, its
code follows the order given in the above list. It’s worth noting that
you will encounter programs that do things differently. Go ahead
and rearrange the menu-related code in the MyHelloWindow con-
structor code in this chapter’s first example project to prove that it
doesn’t matter when menu-related objects are added to parent
objects.

Creating a menubar

The menubar is created through a call to the BMenuBar constructor. This routine
accepts two arguments: a BRect that defines the size and location of the menubar,
and a name for what will be the new BMenuBar object. Here’s an example:

#define MENU_BAR_HEIGHT 18.0

BRect menuBarRect;
BMenuBar *menuBar;

menuBarRect = Bounds();
menuBarRect.bottom = MENU_BAR_HEIGHT;

menuBar = new BMenuBar(menuBarRect, "MenuBar");

Menu Basics 229

Convention dictates that a menubar appear along the top of a window’s content
area. Thus, the menubar’s top left corner will be at point (0.0, 0.0) in window
coordinates. The bottom of the rectangle defines the menu’s height, which is typi-
cally 18 pixels. Because a window’s menubar runs across the width of the win-
dow—regardless of the size of the window—the rectangle’s right boundary can be
set to the current width of the window the menubar is to reside in. The call to the
BWindow member function Bounds() does that. After that, the bottom of the rect-
angle needs to be set to the height of the menu (by convention it’s 18 pixels).

Creating a menubar object doesn’t automatically associate that object with a partic-
ular window object. To do that, call the window’s BWindow member function
AddChild(). Typically a window’s menubar will be created and added to the
window from within the window’s constructor. Carrying on with the above snip-
pet, in such a case the menubar addition would look like this:

AddChild(menuBar);

Creating a menu

Creating a new menu involves nothing more than passing the menu’s name to the
BMenu constructor. For many types of objects, the object name is used strictly for
“behind-the-scenes” purposes, such as in obtaining a reference to the object. A
BMenu object’s name is also used for that purpose, but it has a second use as
well—it becomes the menu name that is displayed in the menubar to which the
menu eventually gets attached. Here’s an example:

BMenu *menu;

menu = new BMenu("File");

Because one thinks of a menubar as being the organizer of its menus, it may be
counterintuitive that the BMenuBar class is derived from the BMenu class—but
indeed it is. A menubar object can thus make use of any BMenu member function,
including the AddItem() function. Just ahead you will see how a menu object
invokes AddItem() to add a menu item to itself. Here you see how a menubar
object invokes AddItem() to add a menu to itself:

menuBar->AddItem(menu);

Creating a menu item

Each item in a menu is an object of type BMenuItem. The BMenuItem constructor
requires two arguments: the menu item name as it is to appear listed in a menu,

230 Chapter 7: Menus

and a BMessage object. Here’s how a menu item to be used as an Open item in a
File menu might be created:

#define MENU_OPEN_MSG 'open'

BMenuItem *menuItem;

menuItem = new BMenuItem("Open", new BMessage(MENU_OPEN_MSG));

Add the menu item to an existing menu by invoking the menu object’s BMenu
member function AddItem(). Here menu is the BMenu object created in the previ-
ous section:

menu->AddItem(menuItem);

While the above method of creating a menu item and adding it to a menu in two
steps is perfectly acceptable, the steps are typically carried out in a single action:

menu->AddItem(new BMenuItem("Open", new BMessage(MENU_OPEN_MSG)));

Handling a Menu Item Selection

Handling a menu item selection is so similar to handling a control click that if you
know one technique, you know the other. You’re fresh from seeing the control
(you either read Chapter 6, Controls and Messages, before this chapter, or you just
jumped back and read it now, right?), so a comparison of menu item handling to
control handling will serve well to cement in your mind the practice used in each
case: message creation and message handling.

In Chapter 6, you read that to create a control, such as a button, you define a mes-
sage constant and then use new along with the control’s constructor to allocate
both the object and the model message—as in this snippet that creates a standard
push button labeled “OK”:

#define BUTTON_OK_MSG 'btmg'

BRect buttonRect(20.0, 20.0, 120.0, 50.0);
BButton *buttonOK;

buttonOK = new BButton(buttonRect, "OKButton",
 "OK", new BMessage(BUTTON_OK_MSG));

Menu item creation is similar: define a message constant and then create a menu
item object:

#define MENU_OPEN_MSG 'open'

BMenuItem *menuItem;

menuItem = new BMenuItem("Open", new BMessage(MENU_OPEN_MSG));

Menu Basics 231

An application-defined message is sent from the Application Server to a window.
The window receives the message in its MessageReceived() function. So the
recipient window’s BWindow-derived class must override MessageReceived()—
as demonstrated in Chapter 6 and again here:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);
 ...
 ...
};

The implementation of MessageReceived() defines the action that occurs in
response to each application-defined message. You saw several examples of this
in Chapter 6, including a few projects that simply used beep() to respond to a
message. Here’s how MessageReceived() would be set up for a menu item mes-
sage represented by a constant named MENU_OPEN_MSG:

void MyHelloWindow::MessageReceived(BMessage* message)
{

 switch(message->what)
 {
 case MENU_OPEN_MSG:
 // open a file;
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Menubar Example Project

The SimpleMenuBar project generates a window that includes a menubar like the
one in Figure 7-2. Here you see that the window’s menubar extends across the
width of the window, as expected, and holds a menu with a single menu item in
it. Choosing the Beep Once item from the Audio menu sounds the system beep.

Figure 7-2. The SimpleMenuBar program’s window

232 Chapter 7: Menus

Preparing the window class for a menubar

If a window is to let a user choose items from a menubar, its BWindow-derived
class must override MessageReceived(). Additionally, you may opt to keep track
of the window’s menubar by including a BMenuBar data member in the class. You
can also include BMenu and BMenuItem data members in the class declaration, but
keeping track of the menubar alone is generally sufficient. As demonstrated later
in this chapter, it’s a trivial task to find any menu or menu item and get a refer-
ence to it by way of a menubar reference. Here’s how the window class header
file (the MyHelloWindow.h file for this project) is set up for menu item handling:

#define MENU_BEEP_1_MSG 'bep1'

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BMenuBar *fMenuBar;
};

Creating the menubar, menu, and menu item

By default, the height of a menubar will be 18 pixels (though the system will auto-
matically alter the menubar height to accommodate a large font that’s used to dis-
play menu names). So we’ll document the purpose of this number by defining a
constant:

#define MENU_BAR_HEIGHT 18.0

After the constant definition comes the MyHelloWindow constructor. In past exam-
ples, the first three lines of this routine created a view that occupies the entire con-
tent area of the new window. This latest version of the constructor uses the same
three lines, but also inserts one new line after the call to OffsetTo():

frame.OffsetTo(B_ORIGIN);
frame.top += MENU_BAR_HEIGHT + 1.0;

fMyView = new MyDrawView(frame, "MyDrawView");
AddChild(fMyView);

The frame is the BRect that defines the size and screen location of the new win-
dow. Calling the BRect function OffsetTo() with an argument of B_ORIGIN
redefines the values of this rectangle’s boundaries so that the rectangle remains the
same overall size, but has a top left corner at window coordinate (0.0, 0.0). That’s
perfect for use when placing a new view in the window. Here, however, I want

Menu Basics 233

the view to start not at the window’s top left origin, but just below the menubar
that will soon be created. Bumping the top of the frame rectangle down the
height of the menu, plus one more pixel to avoid an overlap, properly sets up the
rectangle for use in creating the view.

If you work on a project that adds a view and a menubar to a win-
dow, and mouse clicks on the menubar’s menus are ignored, the
problem most likely concerns the view. It’s crucial to reposition a
window’s view so that it lies below the area that will eventually hold
the menubar. If the view occupies the area that the menubar will
appear in, the menubar’s menus may not respond to mouse clicks.
(Whether a menu does or doesn’t respond will depend on the order
in which the view and menubar are added to the window.) If the
view overlaps the menubar, mouse clicks may end up directed at the
view rather than the menubar.

The menubar is created by defining the bar’s boundary and then creating a new
BMenuBar object. A call to the BWindow function AddChild() attaches the
menubar to the window:

BRect menuBarRect;

menuBarRect = Bounds();
menuBarRect.bottom = MENU_BAR_HEIGHT;

fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
AddChild(fMenuBar);

The menubar’s one menu is created using the BMenu constructor. A call to the
BMenu function AddItem() attaches the menu to the existing menubar:

BMenu *menu;

menu = new BMenu("Audio");
fMenuBar->AddItem(menu);

A new menu is initially devoid of menu items. Calling the BMenu function
AddItem() adds one item to the menu:

menu->AddItem(new BMenuItem("Beep Once", new BMessage(MENU_BEEP_1_MSG)));

Subsequent calls to AddItem() append new items to the existing ones. Because
the menu item won’t be referenced later in the routine, and as a matter of conve-
nience, the creation of the new menu item object is done within the call to
AddItem(). We could expand the calls with no difference in the result. For
instance, the above line of code could be written as follows:

234 Chapter 7: Menus

BMenuItem *theItem;

theItem = new BMenuItem("Beep Once", new BMessage(MENU_BEEP_1_MSG));
menu->AddItem(theItem);

Here, in its entirety, is the MyHelloWindow constructor for the SimpleMenuBar
project:

#define MENU_BAR_HEIGHT 18.0

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 frame.OffsetTo(B_ORIGIN);
 frame.top += MENU_BAR_HEIGHT + 1.0;

 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 BMenu *menu;
 BRect menuBarRect;

 menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
 fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
 AddChild(fMenuBar);

 menu = new BMenu("Audio");
 fMenuBar->AddItem(menu);

 menu->AddItem(new BMenuItem("Beep Once", new BMessage(MENU_BEEP_1_MSG)));

 Show();
}

Handling a menu item selection

To respond to the user’s menu selection, all I did on this project was copy the
MessageReceived() function that handled a click on a control in a Chapter 6
example project. The simplicity of this code sharing is further proof that a menu
item selection is handled just like a control:

void MyHelloWindow::MessageReceived(BMessage* message)
{

 switch(message->what)
 {
 case MENU_BEEP_1_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Menu Basics 235

Window resizing and views

The SimpleMenuBar example introduces one topic that’s only partially related to
menus: how the resizing of a window affects a view attached to that window. A
titled or document window (a window whose constructor contains a third parame-
ter value of either B_TITLED_WINDOW or B_DOCUMENT_WINDOW) is by default resiz-
able. (Recall that a BWindow constructor fourth parameter of B_NOT_RESIZABLE
can alter this behavior.) The SimpleMenuBar window is resizable, so the behavior
of the views within the window isn’t static.

Like anything you draw, a menubar is a type of view. When a window that dis-
plays a menubar is resized, the length of the menubar is automatically altered to
occupy the width of the window. This is a feature of the menubar, not your appli-
cation-defined code.

Unlike a menubar, a BView-derived class needs to specify the resizing behavior of
an instance of the class. This is done by supplying the appropriate Be-defined con-
stant in the resizingMode parameter (the third parameter) to the BView construc-
tor. In past examples, the B_FOLLOW_ALL constant was used for the
resizingMode:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

The B_FOLLOW_ALL constant sets the view to be resized in conjunction with any
resizing that takes place in the view’s parent. If the view’s parent is the window
(technically, the window’s top view) and the window is enlarged, the view will be
enlarged proportionally. Likewise, if the window size is reduced, the view size is
reduced. As a window is resized, it requires constant updating—so the Draw()
function of each view in the window is repeatedly invoked. This may not always
be desirable, as the SimpleMenuBar example demonstrates. This program’s win-
dow is filled with a view of the class MyDrawView. In this project, the Draw()
function for the MyDrawView class draws a rectangle around the frame of the
view:

void MyDrawView::Draw(BRect)
{
 BRect frame = Bounds();

 StrokeRect(frame);
}

If the MyDrawView view has a resizingMode of B_FOLLOW_ALL, the result of
enlarging a window will be a number of framed rectangles in the window—one
rectangle for each automatic call that’s been made to Draw(). Figure 7-3 illus-
trates this.

236 Chapter 7: Menus

The SimpleMenuBar project avoids the above phenomenon by using the
B_FOLLOW_NONE constant for the resizingMode:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_NONE, B_WILL_DRAW)
{
}

This constant sets the view to remain a fixed size and at a fixed location in its par-
ent—regardless of what changes take place in the parent’s size. Figure 7-4 shows
how the view in the SimpleMenuBar project’s window looks when the program’s
window is enlarged.

Figure 7-3. A view’s resizing mode needs to be coordinated with window resizing

Figure 7-4. A fixed-size view is unaffected by window resizing

Menu Basics 237

Menubar and Control Example Project

Now that you know how to add controls and menus to a window, there’s a strong
likelihood that you may want to include both within the same window. The
MenuAndControl project demonstrates how to do this. As Figure 7-5 shows, the
MenuAndControl program’s window includes the same menubar that was intro-
duced in the previous example (the SimpleMenuBar project). Sounding the sys-
tem beep is accomplished by either choosing the one menu item or by clicking on
the button. The view, which in this program doesn’t occupy the entire window
content area, remains empty throughout the running of the program. Here the
view is used to elaborate on last section’s discussion of window resizing and
views. In this chapter’s TwoMenus project, the view displays one of two drawings.

Preparing the window class for a menubar and control

Both the push button control and the one menu item require the definition of a
message constant:

#define BUTTON_BEEP_MSG 'beep'
#define MENU_BEEP_1_MSG 'bep1'

To handle messages from both the push button and the menu item, override
MessageReceived(). Data members for the control and menubar appear in the
BWindow-derived class as well:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;

Figure 7-5. The MenuAndControl application window

238 Chapter 7: Menus

 BButton *fButtonBeep;
 BMenuBar *fMenuBar;
};

Creating the menu-related elements and the control

The MyHelloWindow constructor begins with the customary creation of a view for
the window. Here, however, the view doesn’t occupy the entire content area of
the window. Recall that the SimpleMenuBar project set up the view’s area like this:

frame.OffsetTo(B_ORIGIN);
frame.top += MENU_BAR_HEIGHT + 1.0;

The MenuAndControl project instead sets up the view’s area as follows:

frame.Set(130.0, MENU_BAR_HEIGHT + 10.0, 290.0, 190.0);

Figure 7-5 shows that the resulting view occupies the right side of the program’s
window. Since a view in past examples occupied the entire content area of a win-
dow, items were added to the view in order to place them properly. For instance,
if the MyHelloWindow defined a BButton data member named fButtonBeep and
a MyDrawView data member named fMyView, the addition of the button to the
window would look like this:

fMyView->AddChild(fButtonBeep);

The MyHelloWindow class declared in the MenuAndControl project does in fact
include the two data members shown in the above line of code. This project’s
MyHelloWindow constructor, however, adds the button directly to the window
rather than to the window’s view. A call to the BButton function MakeDefault()
serves to outline the button:

AddChild(fButtonBeep);
fButtonBeep->MakeDefault(true);

Looking back at Figure 7-5, you can see that in this project it wouldn’t make sense
to add the button to the window’s view. If I did that, the button would end up
being placed not on the left side of the window, but on the right side.

After adding the button to window, we create the menubar and add it to the win-
dow, create the menu and add it to the menubar, and create the menu item and
add it to the menu. The menu-related code is identical to that used in the previ-
ous example (the SimpleMenuBar project). Note that there is no significance to my
placing the control-related code before the menu-related code—the result is the
same regardless of which component is added to the window first:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 frame.Set(130.0, MENU_BAR_HEIGHT + 10.0, 290.0, 190.0);

Menu Basics 239

 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtOnBeep = new BButton(buttonBeepRect, buttonBeepName,
 buttonBeepLabEl, new BMessage(BUTTON_BEEP_MSG));
 AddChild(fButtonBeep);
 fButtonBeep->MakeDefault(true);

 BMenu *menu;
 BRect menuBarRect;

 menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
 fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
 AddChild(fMenuBar);

 menu = new BMenu("Audio");
 fMenuBar->AddItem(menu);

 menu->AddItem(new BMenuItem("Beep Once", new BMessage(MENU_BEEP_1_MSG)));

 Show();
}

Handling a menu item selection and a control click

It’s important to keep in mind that “a message is a message”—a window won’t dis-
tinguish between a message issued by a click on a control and a message gener-
ated by a menu item selection. So the same MessageReceived() function han-
dles both message types:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_MSG:
 beep();
 break;

 case MENU_BEEP_1_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Because a click on the Beep One button and a selection of the Beep Once menu
item both result in the same action—a sounding of the system beep—I could have
defined a single message constant. For instance, instead of defining both the
BUTTON_BEEP_MSG and the MENU_BEEP_1_MSG constants, I could have simply
defined, say, a BEEP_MSG:

#define BEEP_MSG 'beep'

240 Chapter 7: Menus

The One View Technique
Now you’ve seen numerous examples that establish one window-encompass-
ing view, and one example that doesn’t. Which method should you use? Sorry,
but the answer is an ambiguous “It depends.” It depends on whether your pro-
gram will be making “universal” changes to a window, but it behooves you to
get in the habit of always including a window-filling view in each of your
BWindow-derived classes. If, much later in project development, you decide a
window needs to be capable of handling some all-encompassing change or
changes, you can just issue appropriate calls to the view and keep changes to
your project’s code to a minimum.

As an example of a universal change to a window, consider a window that dis-
plays several controls and a couple of drawing areas. If for some reason all of
these items need to be shifted within the window, it would make sense to have
all of the items attached to a view within the window rather than to the win-
dow itself. Then a call to the BView MoveBy() or MoveTo() member function
easily shifts the window’s one view, and its contents, within the window.

The second reason to include a window-filling view—programmer’s prefer-
ence—is related to the first reason. For each BWindow-derived class you define,
you might prefer as a matter of habit to also define a BView-derived class:

class MyFillView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
};

If you have no immediate plans for the view, simply implement the view class
member functions as empty:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_NONE, B_WILL_DRAW)
{
}

void MyDrawView::AttachedToWindow()
{
}

void MyDrawView::Draw(BRect)
{
}

—Continued—

Menu Basics 241

The BButton constructor would then make use of this new message constant:

fButtonBeep = new BButton(buttonBeepRect, buttonBeepName,
 buttonBeepLabel, new BMessage(BEEP_MSG));

The creation of the menu item makes use of this same message constant:

menu->AddItem(new BMenuItem("Beep Once", new BMessage(BEEP_MSG)));

A click on the button or a selection of the menu item would both result in the
same type of message being sent to the window, so the MessageReceived()
function would now need only one case label:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BEEP_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

This scenario further demonstrates the notion that a window isn’t interested in the
source of a message—it cares only about the type of the message (as defined by
the message constant). That’s all well and good, but what’s the likelihood of a
real-world application having a window that includes both a control and a menu
item that produce the same action? Perhaps higher than you might guess. It’s a
common practice in many programs to include a control window (usually referred

In the window’s constructor, create and add a view. Then add all of the win-
dow’s controls and other views to this main view:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 frame.OffsetTo(B_ORIGIN);

 fMyView = new MyFillView(frame, "MyFillWindowView");
 AddChild(fMyView);

fButton = new BButton(buttonRect, buttonName,
 buttonLabel, new BMessage(BUTTON_MSG));
 fMyView->AddChild(fButton);
 ...
 ...
}

242 Chapter 7: Menus

to as a palette) that as a matter of convenience holds a number of buttons that
mimic the actions of commonly used menu items.

Window resizing and the view hierarchy

This chapter’s first example, the SimpleMenuBar project, illustrated how window
resizing affects a view. Including a control in the window of the MenuAndControl
project provides an opportunity to illuminate resizing further.

A view created with a resizingMode of B_FOLLOW_ALL is one that is resized
along with its resized parent. A resizingMode of B_FOLLOW_NONE fixes a view in
its parent—even as the parent is resized. A view can also be kept fixed in size, but
move within its parent. How it moves in relationship to the parent is dependent
on which of the Be-defined constants B_FOLLOW_RIGHT, B_FOLLOW_LEFT, B_
FOLLOW_BOTTOM, or B_FOLLOW_TOP are used for the resizingMode. Each con-
stant forces the view to keep its present distance from one parent view edge. Con-
stants can also be used in combination with one another by using the OR opera-
tor (|). In the MenuAndControl project, the MyDrawView constructor combines B_
FOLLOW_RIGHT and B_FOLLOW_BOTTOM:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_RIGHT | B_FOLLOW_BOTTOM, B_WILL_DRAW)
{
}

The result of this pairing of constants is a view that remains fixed to the parent
view’s (the window here) right and bottom. In Figure 7-6, the MenuAndControl
window’s size has been reduced horizontally and increased vertically, yet you see
that the view has kept its original margin of about ten pixels from the window’s
right side and about ten pixels from the window’s bottom edge.

Figure 7-6. A view that keeps a constant-size right and bottom border in its parent

Menu Basics 243

A complete description of all the resizingMode constants is found
in the BView section of the Interface Kit chapter of the Be Book.

Figure 7-6 raises an interesting issue regarding the window’s view hierarchy. In the
figure, you see that the view appears to be drawn behind the button. As of this
writing, the view hierarchy determines the drawing order of the views in a
window. When a window requires updating, each view’s Draw() function is auto-
matically invoked. The order in which the Draw() functions are called is first
dependent on the view hierarchy, starting from the window’s top view down to its
bottom views. For views on the same view hierarchy level, the order in which
their Draw() functions are invoked depends on the order in which the views were
added, or attached, to their parent view. The first view added becomes the first
view redrawn. Such is the case with the BButton view and the MyDrawView. Each
was added to the window, so these two views are at the same level of the view
hierarchy, just under the window’s top view. The MyDrawView was added first, so
it is updated first. After its Draw() function is called, the BButton Draw() routine
is called—thus giving the button the appearance of being in front of the
MyDrawView:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 frame.Set(130.0, MENU_BAR_HEIGHT + 10.0, 290.0, 190.0);

 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep = new BButton(buttonBeepRect, buttonBeepName,
 buttonBeepLabel, new BMessage(BUTTON_BEEP_MSG));
 AddChild(fButtonBeep);
 ...
 ...
}

If the order of the two calls to AddChild() were switched, you would expect the
button to be redrawn first, and the MyDrawView to be updated next. Give it a try
by editing the MyHelloWindow.cpp file of the MenuAndControl project. When you
do that, you’ll see that running the program and shrinking the window results in
the MyDrawView obscuring the button.

244 Chapter 7: Menus

Notice that the discussion of view updating order starts of with “As
of this writing…”. There is no guarantee that this order based on
view hierarchy will always be in effect. In short, don’t make assump-
tions about view updating order. Instead, make an effort not to over-
lap views.

Working with Menus
Your program can get by with simple, static menus and menu items—but why
stop there? The menubar, menus, and menu items of a program should reflect the
current state of a program. You can make sure they do that by implementing
menus so that they give the user visual cues as to what is being done, and what
can and can’t be done. For instance, a menu item can be marked with a check-
mark to let the user know the item is currently in force. Or a menu item’s name
can be changed, if appropriate, to what is currently taking place in the program. A
menu item—or an entire menu—can be disabled to prevent the user from attempt-
ing to perform some action that doesn’t make sense at that point in the program is
at. These and other menu-altering techniques are covered in this section.

Creating a Menu Item

Each menu item in a menu is an object based on the BMenuItem class. Menu item
objects were introduced earlier in this chapter—here they’re studied in much
greater detail.

The BMenuItem class

A menu item is created using the BMenuItem constructor, the prototype of which
is shown here:

BMenuItem(const char *label,
 BMessage *message,
 char shortcut = 0,
 uint32 modifiers = 0)

The first BMenuItem parameter, label, assigns the item its name, which is dis-
played as the item’s label when the user pulls down the menu in which the item
appears.

The message parameter assigns a message of a particular type to the menu item.
When the user chooses the item, the message is delivered to the window
that holds the menubar containing the menu item. That window’s

Working with Menus 245

MessageReceived() function becomes responsible for carrying out the action
associated with the menu item.

The third BMenuItem constructor parameter, shortcut, is optional. The default
value used by the constructor is 0, but if a character is passed, that character
becomes the menu item’s keyboard shortcut. When the user presses the shortcut
key in conjunction with a modifier key, the menu item is considered selected—just
as if the user chose it from the menu. The fourth parameter, modifiers, specifies
what key is considered the modifier key. A keyboard shortcut must include the
Command key (which by default is the Alt key on a PC and the Command key on
a Macintosh) as its modifier key, but it can also require that one or more other
modifier keys be pressed in order to activate the keyboard shortcut. Any of the Be-
defined modifier key constants, including B_COMMAND_KEY, B_SHIFT_KEY,
B_OPTION_KEY, and B_CONTROL, can be used as the modifiers parameter. For
instance, to designate that a key combination of Command-Q represent a means of
activating a Quit menu item, pass 'Q' as the shortcut parameter and B_COMMAND_
KEY as the modifiers parameter. To designate that a key combination of Alt-Shift-W
(on a PC) or Command-Shift-W (on a Mac) represents a means of closing all open
windows, pass 'W' as the shortcut parameter, and the ored constants
B_COMMAND_KEY | B_SHIFT_KEY as the modifiers parameter.

Creating a BMenuItem object

A menu item is often created and added to a menu in one step by invoking the
BMenuItem constructor from right within the parameter list of a call to the BMenu
function AddItem():

menu->AddItem(new BMenuItem("Start", new BMessage(START_MSG)));

Alternatively, a menu item can be created and then added to a menu in a separate
step:

menuItem = new BMenuItem("Start", new BMessage(START_MSG));
menu->AddItem(menuItem);

Regardless of the method used, to this point the BMenuItem constructor has been
passed only two arguments. To assign a keyboard shortcut to a menu item,
include arguments for the optional third and fourth parameters. Here a menu item
named “Start” is being given the keyboard shortcut Command-Shift-S (with the
assumption that the slightly more intuitive keyboard shortcut Command-S is per-
haps already being used for a “Save” menu item):

menu->AddItem(new BMenuItem("Start", new BMessage(START_MSG), 'S',
 B_COMMAND_KEY | B_SHIFT_KEY));

If a menu item is associated with a keyboard shortcut, and if that shortcut uses a
modifier key, a symbol for that modifier key appears to the right of the menu item.

246 Chapter 7: Menus

The symbol provides the user with an indication of what key should be pressed in
conjunction with the character key that follows the symbol. Figure 7-7 provides
several examples. In that figure, I’ve set up a menu with four items. The name I’ve
given each item reflects the modifier key or keys that need to be pressed in order
to select the item. For instance, the first menu item is selected by pressing Com-
mand-A. This next snippet provides the code necessary to set up the menu shown
in Figure 7-7:

menu->AddItem(new BMenuItem("Command", new BMessage(A_MSG), 'A',
 B_COMMAND_KEY));
menu->AddItem(new BMenuItem("Command-Shift", new BMessage(B_MSG), 'B',
 B_COMMAND_KEY | B_SHIFT_KEY));
menu->AddItem(new BMenuItem("Command-Shift-Option", new BMessage(C_MSG), 'C',
 B_COMMAND_KEY | B_SHIFT_KEY | B_OPTION_KEY));
menu->AddItem(new BMenuItem("Command-Shift-Option-Control",
 new BMessage(D_MSG), 'D',
 B_COMMAND_KEY | B_SHIFT_KEY |
 B_OPTION_KEY | B_CONTROL_KEY));

As illustrated in the preceding snippet and Figure 7-7, menu items are displayed in
a menu in the order in which they were added to the BMenu object. To reposition
items, simply rearrange the order of the calls to AddItem().

A separator is a special menu item that is nothing more than an inactive gray line.
It exists only to provide the user with a visual cue that some items in a menu are
logically related, and are thus grouped together. To add a separator item, invoke
the BMenu function AddSeparatorItem():

menu->AddSeparatorItem();

Figure 7-15, later in this chapter, includes a menu that has a separator item.

Accessing a Menu Item

If a program is to make a change to a menu item, it of course needs access to the
item. That can be accomplished by storing either the BMenuItem object or the
BMenuBar object as a data member.

Figure 7-7. A menu that includes items that use several shortcut modifier keys

Working with Menus 247

Storing a menu item in a data member

If you need access to a menu item after it is created, just store it in a local variable:

BMenu *menu;
BMenuItem *menuItem;
...
menu->AddItem(menuItem = new BMenuItem("Beep", new BMessage(BEEP_MSG)));

This snippet creates a menu item and adds it to a menu—as several previous
examples have done. Here, though, the menu item object created by the
BMenuItem constructor is assigned to the BMenuItem variable menuItem. Now the
project has access to this one menu item in the form of the menuItem variable.

This menu item access technique is of limited use. Access to a menu item may
need to take place outside of the function which created the menu item. If that’s
the case, a window class data member can be created to keep track of an item for
the life of the window:

class MyHelloWindow : public BWindow {
 ...

 private:
 ...
 BMenuItem *fMenuItem;
};

Now, when the menu item is created, store a reference to it in the fMenuItem
data member:

menu->AddItem(fMenuItem = new BMenuItem("Beep", new BMessage(BEEP_MSG)));

Using this technique for creating the menu item, the menu item can be accessed
from any member function of the window class.

Storing a menubar in a data member

If several menu items are to be manipulated during the running of a program, it
may make more sense to keep track of just the menubar rather than each individ-
ual menu item:

class MyHelloWindow : public BWindow {
 ...

 private:
 ...
 BMenuBar *fMenuBar;
};

If the menubar can be referenced, the BMenu member function FindItem() can
be used to access any menu item in any of its menus. Pass FindItem() a menu’s

248 Chapter 7: Menus

label (the string that represents the menu item name that is displayed to the user),
and the function returns that menu item’s BMenuItem object:

BMenuItem *theItem;

theItem = fMenuBar->FindItem("Beep");

Marking Menu Items

When selected, a menu item can be given a check mark to the left of the item
name. When selected again, this same menu item can become unchecked.
Figure 7-8 shows a menu with two marked items.

Marking a menu item

To mark or unmark a menu item, invoke the item’s BMenuItem function
SetMarked(). Passing this function a value of true marks the item, while pass-
ing a value of false unmarks it. Attempting to mark an already marked item or
unmark an already unmarked item has no effect. This next snippet sets up the
Windows menu items shown in Figure 7-8. Assume that data members exist to
keep track of each of the three Windows menu items, and that the menubar and
menu have already been created:

BMenu *menu;
BMenuItem *menuItem;

menu->AddItem(fLockWindMenuItem = new BMenuItem("Lock Control Window",
 new BMessage(LOCK_WIND_MSG)));
fLockWindMenuItem->SetMarked(true);
menu->AddItem(fResizeWindMenuItem = new BMenuItem("Allow Window Resizing",
 new BMessage(RESIZE_WIND_MSG)));
fResizeWindMenuItem ->SetMarked(true)
menu->AddItem(fMultipleWindMenuItem = new BMenuItem("Allow Multiple Windows",
 new BMessage(MULTIPLE_WIND_MSG)));

If a menu item is to be initially marked (as the Lock Control Window and Allow
Window Resizing items are in the above snippet), save a reference to the item
when creating it. Then use that BMenuItem object to mark the item.

Figure 7-8. A menu with marked, or checked, menu items

Working with Menus 249

To find out whether a menu item is marked, call the BMenuItem function
IsMarked(). For instance, after the user selects a menu item, call IsMarked() to
determine whether to pass SetMarked() a value of true or false and thus tog-
gle the menu’s mark. The updating of an item’s mark can take place in the
MessageReceived() function, as shown here for the first menu item from the
Windows menu of Figure 7-8:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case LOCK_WIND_MSG:
 BMenuItem *theItem;

 theItem = fMenuBar->FindItem("Lock Control Window");
 if (theItem->IsMarked()) {
 theItem->SetMarked(false);
 // code to unlock a window (allow user to move it)
 }
 else {
 theItem->SetMarked(true);
 // code to lock a window (prevent user from moving it)
 }
 ...
 ...
 default:
 BWindow::MessageReceived(message);
 }
}

Marking a menu item in a menu of related items

A menu may treat all of its items as related options, with the intent of allowing
only one item to be in force at any time. The Audio menu in Figure 7-9 provides
an example of such a menu. Here the user is expected to choose one of the two
beeping options. A subsequent click on the Beep button sounds the system beep
either once or twice, depending on the currently selected menu item.

Figure 7-9. A menu with related options

250 Chapter 7: Menus

If all of the items in a menu are to act as a single set of options, you can set up
the menu to automatically handle the checking and unchecking of its items. The
BMenu function SetRadioMode() instructs a menu to allow only one of its items
to be marked at any time. Additionally, setting a menu to radio mode provides the
menu with the power to automatically mark whatever item the user chooses, and
to unmark the previously selected item. To set a menu to radio mode, pass
SetRadioMode() a value of true. This next snippet sets up the Audio menu pic-
tured in Figure 7-9, marks the Beep Twice item, and sets the Audio menu to radio
mode:

BMenu *menu;
BMenuItem *menuItem;
...
menu->AddItem(new BMenuItem("Beep Once", new BMessage(MENU_BEEP_1_MSG)));
menu->AddItem(menuItem = new BMenuItem("Beep Twice",
 new BMessage(MENU_BEEP_2_MSG)));
menuItem->SetMarked(true);
menu->SetRadioMode(true);

While a menu in radio mode will properly update its item mark in response to
menu item selections, it is your responsibility to check which item is to be initially
marked. As shown above, that’s accomplished via a call to SetMarked(). If a
menu item is checked, your code should also make sure that the feature or option
to be set is in fact set.

The BMenu function FindMarked() returns the menu item object of the currently
marked item in a menu. When a menu is in radio mode, only one item can be
marked at any time. In the next snippet, the Audio menu shown in Figure 7-9 is
kept track of by a BMenu data member named fAudioMenu. Calling
FindMarked() on this item returns the BMenuItem object of the currently marked
item:

BMenuItem *theItem;

theItem = fAudioMenu->FindMarked();

FindMarked() can be used on a menu that isn’t set to radio mode, too—but its
usefulness is then diminished because there may be more than one item marked.
If more than one item is marked, FindMarked() returns a reference to the first
marked item encountered (it starts at the first item in a menu and moves down).

Changing a Menu Item’s Label

A menu item’s label can be changed at any time. To do that, gain access to the
menu item and then invoke the BMenuItem function SetLabel(). In the next

Working with Menus 251

snippet, a menu item named “Start Simulation” is being renamed to “Stop Simula-
tion.”

fSimMenuItem->SetLabel("Stop Simulation");

To find out the current label of a menu item, call the BMenuItem function
Label(). A call to this routine can be made prior to a call to SetLabel() to
determine the item’s current label before changing it to a new string. The type of
label-changing shown in the above snippet is a good candidate for the use of both
Label() and SetLabel(). If the user starts some sort of action by choosing a
menu item, that menu item’s label might change in order to provide the user with
a means of stopping the action. The MessageReceived() function holds the
label-changing code:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case MENU_SIMULATION_RUN_MSG:
 const char *menuItemLabel;

 menuItemLabel = fSimMenuItem->Label();
 if ((strcmp(menuItemLabel, "Start Simulation") == 0)) {
 fSimMenuItem->SetLabel("Stop Simulation");
 // invoke application-defined routine to start simulation
 }
 else {
 fSimMenuItem->SetLabel("Start Simulation");
 // invoke application-defined routine to stop simulation
 }
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

This snippet is the first in this book to make use of a standard C library function.
While the member functions of the classes of the BeOS take care of many of your
programming needs, they of course can’t account for every task your program is to
perform. Before writing an application-defined routine, don’t forget to fall back on
your C and C++ background to select a standard library function where appropri-
ate. Here I use the string comparison routine strcmp() to compare the characters
in a menu item’s label to the string “Start Simulation.” If the strings are identical,
strcmp() returns a value of 0. In such a case, the menu item label needs to be
changed to signal that the simulation is running and to allow the user to halt the
action. As shown in the two comments in the above code, whatever it is that is to
be simulated is left as an exercise for the reader!

252 Chapter 7: Menus

Disabling and Enabling Menus and Menu Items

When a menu is created, the menu and each of its items are all initially enabled.
The entire menu—including the menu’s name in the menubar and all its items—or
any individual menu item can be disabled.

Disabling and enabling a menu item

A disabled menu item appears dim and is inactive—the user can see the item and
read its label, but can’t select it (releasing the mouse button while the cursor is
over the item has no effect). A menu item can be disabled or re-enabled by invok-
ing the BMenuItem member function SetEnabled(). An argument of true
enables the item, while an argument of false disables the item. By default, a
menu item is enabled upon creation. To disable a newly created menu item, call
SetEnabled() just after the menu item is created. Assuming that the menu’s win-
dow keeps track of its menubar in a data member named fMenuBar, the follow-
ing snippet could be used to disable a menu item named “Start”:

BMenuItem *theItem;

theItem = fMenuBar->FindItem("Start");
theItem->SetEnabled(false);

The current state of a menu item can be found by invoking the item’s
IsEnabled() function. This routine returns a value of true if the item is pres-
ently enabled, false if it’s disabled.

If the enabling or disabling of a menu item is to take place in response to a mes-
sage (whether initiated by a different menu item selection or a control click),
include the menu item enabling/disabling code in MessageReceived(). Here a
menu item named Advanced Options is enabled or disabled in response to an
application-defined TOGGLE_OPTIONS_MSG message:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case TOGGLE_OPTIONS_MSG:
 BMenuItem *theItem;

 theItem = fMenuBar->FindItem("Advanced Options");
 if (theItem->IsEnabled())
 theItem->SetEnabled(false);
 else
 theItem->SetEnabled(true);
 ...
 ...
 default:
 BWindow::MessageReceived(message);
 }
}

Working with Menus 253

What happens when SetEnabled() or IsEnabled() is invoked
depends on the state of the menu the item resides in. If the menu
itself is disabled, attempting to enable an individual item in that
menu will fail. Thus, even if your code hasn’t explicitly disabled a
specific menu item, IsEnabled() could return a value of false for
that item.

Disabling and enabling a menu

When an entire menu is disabled, its name appears dim in the menubar. Clicking
on the menu opens the menu and displays its items, but each of the items will be
disabled. Now that you know of the BMenuItem() function SetEnabled(), it
should come as no surprise that there is also a BMenu version of this routine. Pass-
ing a value of false to a menu object’s SetEnabled() function disables the
entire menu. If a program keeps track of an Audio menu in a BMenu data member
named fAudioMenu, you could disable that menu with just this line of code:

fAudioMenu->SetEnabled(false);

The current state of a menu can be found by invoking the item’s IsEnabled()
function. Like the BMenuItem version, the BMenu version of this routine returns a
value of true if the object is presently enabled.

A menu’s state usually changes in response to a message. If that’s the case, include
the menu enabling or disabling code in MessageReceived().

Menu and Menu Item Keyboard Access

Menu items can be accessed by the mouse, of course, but they can also be
accessed from the keyboard.

Shortcut keys

This chapter’s “Creating a Menu Item” section demonstrated how to assign a new
BMenuItem a keyboard shortcut. Here the third and fourth arguments to the
BMenuItem constructor set the new menu item to have a keyboard shortcut of
Command-M:

menu->AddItem(new BMenuItem("Command", new BMessage(A_MSG), 'M',
 B_COMMAND_KEY));

In most instances the above method works fine for establishing a keyboard short-
cut. However, your program may want to assign a keyboard shortcut on the fly.
This is particularly true if your program gives the user the power to modify menu

254 Chapter 7: Menus

item keyboard shortcuts. If an existing menu item doesn’t have a keyboard short-
cut, or your program needs to change its currently defined keyboard shortcut,
invoke the item’s SetShortcut() function. The two arguments to this routine are
identical to the third and fourth arguments that can be passed to the BMenuItem
constructor. Here the keyboard shortcut for an Open menu item is being set to
Command-Shift-O:

BMenuItem *theItem;

theItem = fMenuBar->FindItem("Open");
theItem->SetShortcut('O', B_COMMAND_KEY | B_SHIFT_KEY)

To determine the current keyboard shortcut of a menu item, invoke the item’s
Shortcut() function. Pass this function a pointer to a 32-bit unsigned integer
variable. Shortcut() will fill this variable with a mask that consists of all of the
modifier keys that are a part of the shortcut for the menu item. Shortcut() will
also return the shortcut character for the menu item:

uint32 *shortcutModifiers;
char shortcutChar;

shortcutChar = theItem->Shortcut(shortcutModifiers);

To determine which modifier key or keys are a part of the shortcut, perform a bit-
wise AND on the uint32 parameter. In the next snippet, a menu item named Cal-
culate is examined to determine its shortcut key. If the character returned by
Shortcut() is null, the item has no shortcut key. If the menu item does have a
shortcut, the code goes on to determine which modifier keys are involved.
Because all shortcut key combinations must include the Command key, no check
is made to see if that key is a modifier. The code does, however, check to see if
the Shift or Option keys are included in the shortcut key combination:

BMenuItem *theItem;
uint32 *shortcutModifiers;
char shortcutChar;
bool hasShortcut = true;
bool shiftKeyModifier = false;
bool optionKeyModifier = false;

theItem = fMenuBar->FindItem("Calculate");
shortcutChar = theItem->Shortcut(shortcutModifiers);

if (shortcutChar == '\0') // menu item doesn't have a shortcut key
 hasShortcut = false;
else { // menu item has a shortcut key
 if (*shortcutModifiers & B_SHIFT_KEY)
 shiftKeyModifier = true;
 if (*shortcutModifiers & B_OPTION_KEY)
 optionKeyModifier = true;
}

Working with Menus 255

Keyboard triggers

A menu item can optionally be supplied with a shortcut key to benefit users who
prefer the keyboard over the mouse. But every menu item is supplied with a trig-
ger for the same reason. A trigger is a single character the user types in order to
select a menu item. A trigger differs from a shortcut key in two ways. First, the
trigger doesn’t involve the use of a modifier key—simply pressing the trigger key
is enough to choose the menu item. The second difference is that the trigger
works only when the menu that holds the item in question is open, or dropped.
Once a menu is open onscreen, the user can simply press a trigger key to select
an item.

The trigger is one of the characters in the menu item name, and is indicated by
being underlined. Typically, the trigger is the first character of one of the words
that make up the menu item’s name. Looking back at Figure 7-9 reveals two exam-
ples—there you see that the Audio menu’s two items, Beep Once and Beep Twice,
have triggers of “O” and “T,” respectively.

Because a trigger can be used only on an open menu, different menus in the same
menubar can have items with the same trigger. A menu item’s trigger is assigned
to the item by the system, so your program doesn’t have to worry about which
items end up with which triggers. If you do want responsibility for assigning a
menu item a particular trigger, invoke that item’s SetTrigger() function. Simply
pass SetTrigger() the character that is to serve as the new trigger. Here a menu
item named Jump is given a trigger of “u”:

BMenuItem *theItem;

theItem = fMenuBar->FindItem("Jump");
theItem->SetTrigger('u');

The character you pass to SetTrigger() must be either the menu item’s shortcut
key or a character in the menu item name. Failing both of these, the item will not
be given a trigger—and whatever character had previously been assigned to the
item won’t be used either (so passing SetTrigger() an invalid character pro-
vides the exception to the rule that every menu item must have a trigger).

You can verify that a call to SetTrigger() worked according to plan by invok-
ing the item’s Trigger() function. Double-check to see if the above snippet
works by following it with a call to Trigger():

char theTrigger;

theTrigger = theItem->Trigger();

256 Chapter 7: Menus

With the exception of a menu item that’s been given a trigger via a
call to SetTrigger(), the system doesn’t assign menu items trig-
gers until runtime. That’s done to avoid duplication of triggers within
a menu. For this reason, calling Trigger() on a menu item that
hasn’t been manually assigned a trigger (by your project invoking
the item’s SetTrigger() function) serves little purpose—
Trigger() will simply return NULL in such cases.

Figure 7-9 shows that the menu itself has a trigger—the “A” key serves as the trig-
ger for the Audio menu. Like a menu item trigger, the system automatically assigns
a trigger to a menu. Again like a menu item, your project can override the system-
supplied trigger character. To do that, invoke the BMenu version of SetTrigger()
on a menu object. Here the Audio menu is created and its trigger set to “U”:

BMenu *menu;
...
menu = new BMenu("Audio");
fMenuBar->AddItem(menu);
menu->SetTrigger('U');
// now add menu items to menu

Menu Characteristics Example Projects

In this chapter’s example projects folder you’ll find three projects that alter the
characteristics of menus: TwoItemMenu, DisableMenuItem, and FindItemByMark.
Each contains only a few lines of new code, so I’ll forego thorough code walk-
throughs and describe each only briefly.

Adding and altering menu items example project

The menu in each of this chapter’s previous example projects consisted of just a
single item. The TwoItemMenu project adds a second item. This project also adds
a shortcut key to each item—Command-1 for the Beep Once item and Command-2
for the Beep Twice item. Figure 7-10 shows that the system has assigned each item
a trigger that is the same character as that used in the item’s shortcut key. Finally,
the project demonstrates a menu set to radio mode—selecting one menu item
checks that item and unchecks the other item.

Most of the code included in the TwoMenuItem project will be quite familiar to
you. The code that’s pertinent to the menu item topics in this section comes from
the MyHelloWindow constructor:

BMenu *menu;
BMenuItem *menuItem;
...
menu = new BMenu("Audio");

Working with Menus 257

fMenuBar->AddItem(menu);
menu->AddItem(new BMenuItem("Beep Once", new BMessage(MENU_BEEP_1_MSG),
 '1', B_COMMAND_KEY));
menu->AddItem(menuItem = new BMenuItem("Beep Twice", new BMessage(MENU_BEEP_
2_MSG),
 '2', B_COMMAND_KEY));
menuItem->SetMarked(true);
menu->SetRadioMode(true);

Menu item disabling and enabling example project

The DisableMenuItem project adds a few lines of code to the TwoMenuItem
project to demonstrate how your program can toggle a menu item’s state based on
a message sent by a control. Clicking on the Beep button disables the Beep Once
menu item in the Audio menu. Clicking on the Beep button again enables the
same item. This menu-related code is found in the MessageReceived() case sec-
tion for the message issued by the button control:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_MSG:
 // code to beep the appropriate number of times goes here

 BMenuItem *theItem;

 theItem = fMenuBar->FindItem("Beep Once");
 if (theItem->IsEnabled())
 theItem->SetEnabled(false);
 else
 theItem->SetEnabled(true);
 break;

 case MENU_BEEP_1_MSG:
 fNumBeeps = 1;
 break;

 case MENU_BEEP_2_MSG:
 fNumBeeps = 2;

Figure 7-10. Menu items with shortcut keys

258 Chapter 7: Menus

 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Accessing a menu item from a menu object

The preceding two projects use a MyHelloWindow class data member named
fNumBeeps to keep track of how many times the system beep should sound in
response to a click on the Beep button. The FindItemByMark project omits this
data member, and doesn’t keep track of which menu item is currently selected.
Instead, it waits until the user clicks the Beep button before determining which
menu item is currently marked. Clicking the Beep button results in the issuing of a
BUTTON_BEEP_MSG that reaches the MessageReceived() function. Here the
BMenu member function FindMarked() is used to find the currently checked
menu item. Once the item object is obtained, its place in the menu is found by
calling the BMenu function IndexOf(). A menu’s items are indexed starting at 0,
so adding 1 to the value returned by IndexOf() provides the number of beeps to
play. The following snippet is from the MessageReceived() function of the
project’s MyHelloWindow class:

case BUTTON_BEEP_MSG:
 bigtime_t microseconds = 1000000; // one second
 int32 i;

 BMenuItem *theItem;
 int32 itemIndex;
 int32 numBeeps;

 theItem = fAudioMenu->FindMarked();
 itemIndex = fAudioMenu->IndexOf(theItem);
 numBeeps = itemIndex + 1;

 for (i = 1; i <= numBeeps; i++)
 {
 beep();
 if (i != numBeeps)
 snooze(microseconds);
 }

 break;

Multiple Menus
Rather than jumping right into new topics, I’ll provide a bit of a transition by pre-
senting an example that includes two menus in its menubar. The example isn’t
entirely gratuitous, though—much of its code will reappear in upcoming discus-

Multiple Menus 259

sions. Figure 7-11 shows the window, and the new Visual menu that’s been added
to the existing Audio menu, for the TwoMenus program. Choosing Draw Circles
from the Visual menu draws a number of concentric circles in the window, while
Draw Squares draws, yes, a number of concentric squares!

The MyHelloWindow.h header file in the TwoMenus project defines five message
constants—one for the window’s button and one for each of the four menu items.

#define BUTTON_BEEP_MSG 'beep'
#define MENU_BEEP_1_MSG 'bep1'
#define MENU_BEEP_2_MSG 'bep2'
#define MENU_DRAW_CIRCLES_MSG 'circ'
#define MENU_DRAW_SQUARES_MSG 'squa'

The MyHelloWindow class holds four data members. fMyView is used for drawing
the circles or squares, and fNumBeeps holds the number of times the system beep
is to be played when the Beep button is clicked. Once the button and menubar
are created, they aren’t accessed outside of the MyHelloWindow constructor. Thus,
I could have declared BButton and BMenuBar variables local to that routine rather
than making each a data member. However, I’ve opted to set the project up from
the start with the assumption that it will grow in complexity well beyond this triv-
ial version. If I later need to add features that alter either the button or menu items
(such as disabling and so forth), I’m all set.

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep;

Figure 7-11. The TwoMenus application window

260 Chapter 7: Menus

 BMenuBar *fMenuBar;
 int32 fNumBeeps;
};

Some of the MyHelloWindow constructor code is familiar to you, so I won’t show
the routine in its entirety. Here’s the constructor without the view and button
code:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 ...
 ...
 BMenu *menu;
 BMenuItem *menuItem;
 BRect menuBarRect;

 menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
 fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
 AddChild(fMenuBar);

 menu = new BMenu("Audio");
 fMenuBar->AddItem(menu);
 menu->AddItem(new BMenuItem("Beep Once", new BMessage(MENU_BEEP_1_MSG)));
 menu->AddItem(menuItem = new BMenuItem("Beep Twice",
 new BMessage(MENU_BEEP_2_MSG)));
 menu->SetRadioMode(true);
 menuItem->SetMarked(true);
 fNumBeeps = 2;

 menu = new BMenu("Visual");
 fMenuBar->AddItem(menu);
 menu->AddItem(new BMenuItem("Draw Circles",
 new BMessage(MENU_DRAW_CIRCLES_MSG)));
 menu->AddItem(new BMenuItem("Draw Squares",
 new BMessage(MENU_DRAW_SQUARES_MSG)));
 Show();
}

The MessageReceived() routine handles each of the five types of messages the
window might receive. A selection of either of the items from the Visual menu
results in the application-defined function SetViewPicture() being called, fol-
lowed by a call to the BView routine Invalidate() to force the view to update.

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_MSG:
 // beep fNumBeeps times
 break;

 case MENU_BEEP_1_MSG:
 fNumBeeps = 1;

Multiple Menus 261

 break;

 case MENU_BEEP_2_MSG:
 fNumBeeps = 2;
 break;

 case MENU_DRAW_CIRCLES_MSG:
 fMyView->SetViewPicture(PICTURE_CIRCLES);
 fMyView->Invalidate();
 break;

 case MENU_DRAW_SQUARES_MSG:
 fMyView->SetViewPicture(PICTURE_SQUARES);
 fMyView->Invalidate();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

The drawing code could have been kept in the MessageReceived() function, but
I’ve decided to place it in a MyDrawView member function in order to keep
MessageReceived() streamlined. The SetViewPicture() function defines a
BPicture object based on the int32 argument passed to the routine. The value
of that argument is in turn based on the menu item selected by the user:

void MyDrawView::SetViewPicture(int32 pictureNum)
 {
 BRect aRect;
 int32 i;

 switch (pictureNum)
 {
 case PICTURE_SQUARES:
 BeginPicture(fPicture);
 aRect.Set(15.0, 20.0, 140.0, 150.0);
 for (i = 0; i < 30; i++) {
 aRect.InsetBy(2.0, 2.0);
 StrokeRect(aRect);
 }
 fPicture = EndPicture();
 break;

 case PICTURE_CIRCLES:
 BeginPicture(fPicture);
 aRect.Set(15.0, 20.0, 140.0, 150.0);
 for (i = 0; i < 30; i++) {
 aRect.InsetBy(2.0, 2.0);
 StrokeEllipse(aRect);
 }
 fPicture = EndPicture();
 break;
 }
}

262 Chapter 7: Menus

The picture defined in SetViewPicture() is a new data member that’s been
added to the MyDrawView class. Here you see the BPicture data member and the
newly added declaration of the SetViewPicture() function:

#define PICTURE_SQUARES 1
#define PICTURE_CIRCLES 2

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
 void SetViewPicture(int32 pictureNum);

 private:
 BPicture *fPicture;
};

The whole purpose of storing the circles or squares BPicture object in a
MyDrawView data member is so that the picture will be automatically updated
whenever the view it’s drawn in needs updating. That’s accomplished by adding a
call to the BView function DrawPicture() to the MyDrawView member function
Draw():

void MyDrawView::Draw(BRect)
{
 BRect frame = Bounds();

 StrokeRect(frame);
 DrawPicture(fPicture);
}

Pop-up Menus
A pop-up menu is a menu that exists within the content area of a window rather
than within a menubar. The pop-up menu can be positioned anywhere in a win-
dow (or anywhere in a view in a window). Like a menu in a menubar, a pop-up
menu’s content is displayed when the user clicks on the menu. Figure 7-12 shows
a pop-up menu, both before and after being clicked, that holds two items.

Figure 7-12. An example of a pop-up menu

Pop-up Menus 263

A pop-up menu’s default state is radio mode—the most recently selected item in
the menu appears checked when the menu pops up. Figure 7-12 illustrates this for
a menu with two items in it. A pop-up menu is most often in radio mode, so such
a menu should be used to hold a related set of options. If the menu is to hold
items that aren’t directly related to one another, the menu should be housed
within a menubar rather than existing as a pop-up menu. A context-sensitive pop-
up menu is an exception—it behaves like a normal menu, albeit one that is not
tied to a specific location in a window.

The BPopUpMenu Class

A pop-up menu is an object of the class BPopUpMenu. The BPopUpMenu class is
derived from a class you’ve already studied—the BMenu class. Here’s the
BPopUpMenu constructor:

BPopUpMenu(const char *name,
 bool radioMode = true,
 bool labelFromMarked = true,
 menu_layout layout = B_ITEMS_IN_COLUMN)

Like any menu, a pop-up menu has a name. The name is defined by the first
BPopUpMenu constructor parameter and is present on the pop-up menu when the
menu initially appears in a window. This pop-up menu name, however, can be
changed to reflect the user’s selection from the menu. The labelFromMarked
parameter determines if that is to be the case.

The value of the radioMode parameter sets the pop-up menu’s radio mode set-
ting. By default, radioMode has a value of true. A value of true here means the
same as it does for any other menu: choosing one item checks that item and
unchecks whatever item was previously selected. The pop-up menu’s radio mode
value can be toggled by calling the BMenu function SetRadioMode().

If the labelFromMarked parameter is set to true—as it is by default—the user’s
menu item choice from the pop-up menu determines the name the pop-up menu
takes on. The original name won’t reappear during the life of the window to
which the pop up is attached. In Figure 7-12, for instance, the pop-up menu’s
name is Visual. If the user chooses, say, the Draw Squares item, the pop-up
menu’s name will change to Draw Squares. Setting labelFromMarked to true has
the interesting side effect of automatically setting the pop-up menu to radio mode.
That is, regardless of the value passed as the radioMode parameter of the
BPopUpMenu constructor, the menu will be set to radio mode. If
labelFromMarked is false, the pop-up menu’s name will be fixed at its initial
name (as defined by the value passed in as the first parameter) and its radio mode
state will be determined by the value of the radioMode parameter.

264 Chapter 7: Menus

The last BPopUpMenu parameter defines the layout of the pop-up menu. By
default, a pop-up menu’s items appear in a column—just like a menu held in a
menubar. To instead have the items appear in a row, replace the B_ITEMS_IN_
COLUMN value with another Be-defined constant: B_ITEMS_IN_ROW.

The BMenuField Class

A pop-up menu won’t be placed in a menubar, so it doesn’t have to be added to a
BMenuBar object. A pop-up menu does, however, need to be added to an object
capable of controlling the menu. The BMenuField class exists for this purpose.
When a BMenuField object is created, a BPopUpMenu object is associated with it.
Here’s the BMenuField constructor:

BMenuField(BRect frame,
 const char *name,
 const char *label,
 BMenu *menu,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BMenuField is derived from the BView class. When a BMenuField object is
created, four of the six BMenuField constructor parameters (frame, name,
resizingMode, and flags) are passed on to the BView constructor.

The frame is a rectangle that defines the size of the BMenuField, which includes
both a label and a pop-up menu. In Figure 7-12, you saw an example of a
BMenuField object that has a label of “Drawing:” and a menu with the name
“Visual.” Recall that the source of the menu’s name is the name parameter of the
BPopUpMenu object. The BMenuField name parameter serves as a name for the
BMenuField view, and isn’t displayed onscreen. The resizingMode parameter
specifies how the BMenuField is to be resized as its parent view is resized. The
default value of B_FOLLOW_LEFT | B_FOLLOW_TOP means that the distance from
the menu field’s left side and its parent’s parent’s left side will be fixed, as will the
distance from the menu field’s top and its parent’s top. The flags parameter spec-
ifies the notification the menu field is to receive. The default flags value of
B_WILL_DRAW | B_NAVIGABLE means that the menu field view contains draw-
ing, and should thus be subject to automatic updates, and that the menu field is
capable of receiving and responding to keyboard input.

The BMenuField label parameter defines an optional label for the menu field. If
you pass a string here, that string is displayed to the left of the pop-up menu that
is a part of the menu field. To omit a label, pass NULL as the label parameter.

The menu parameter specifies the pop-up menu that is to be controlled by the
menu field. While the class specified is BMenu, it is most likely that you’ll pass a
BPopUpMenu object here (BPopUpMenu is derived from BMenu, so it can be used).

Pop-up Menus 265

Creating a Pop-up Menu

To create a pop-up menu, you first create a BPopUpMenu object, and then create a
BMenuField object. Three of the four BPopUpMenu constructor parameters have
default values, and those values generally suffice when creating a pop-up menu
object—so creating the BPopUpMenu object often involves passing only a single
argument to the BPopUpMenu constructor. Here a BPopUpMenu object for a pop-up
menu named “Visual” is being created:

BPopUpMenu *popUpMenu;

popUpMenu = new BPopUpMenu("Visual");

For a “regular” menu—one that resides in a menubar—the next step would typi-
cally be to add the new menu object to the existing menubar object with a call to
AddItem(). A pop-up menu won’t be placed in a menubar, so the above step is
unnecessary. The pop-up menu does, however, need to be added to a menu field.
The next steps are to create a BMenuField object that incorporates the
BPopUpMenu object and then add this new menu field to a view (or window):

BMenuField *menuField;
BRect popUpMenuRect(10.0, 40.0, 105.0, 70.0);

menuField = new BMenuField(popUpMenuRect, "VisualPopUp", "Drawing",
 popUpMenu);
AddChild(menuField);

The third argument to the BMenuField constructor specifies that the menu field
have a label of “Drawing.” In the previous snippet, the sole argument to the
BPopUpMenu constructor specified that the pop-up menu have the name “Visual.”
The result of executing the above two snippets would be the menu field shown
on the left side of Figure 7-12. The pop-up menu would be devoid of any items.
To add a menu item to a pop up, have the pop-up menu invoke the BMenu func-
tion AddItem(). BPopUpMenu is derived from BMenu, and BPopUpMenu doesn’t
override the BMenu version of AddItem()—so adding menu items to a pop-up
menu is handled in the exact same way as adding menu items to a “normal” menu
that resides in a menubar. Here two items are added to the pop-up menu that was
just created:

popUpMenu->AddItem(new BMenuItem("Draw Circles",
 new BMessage(MENU_DRAW_CIRCLES_MSG)));
popUpMenu->AddItem(new BMenuItem("Draw Squares",
 new BMessage(MENU_DRAW_SQUARES_MSG)));

At this point the menu field, and the pop-up menu that is a part of the menu field,
match those shown on the right of Figure 7-12.

One reason the menu field label exists is to provide the user with information
regarding the purpose of the menu field’s pop-up menu. Once the user chooses

266 Chapter 7: Menus

an item from the pop-up menu, the pop-up menu’s name disappears, so the menu
field label may then be of help. If the contents of the pop-up menu make the pop-
up menu’s purpose obvious, you may choose to forego the menu field label. To
do that, simply pass NULL as the third argument to the BMenuField constructor.
Compare this BMenuField object creation with the one created a couple of snip-
pets back:

menuField = new BMenuField(popUpMenuRect, "VisualPopUp", NULL, popUpMenu);

The left side of Figure 7-13 shows how the menu field looks now. The middle part
of the figure shows a menu item selection being made, while the right side of the
figure shows how the menu field looks after choosing an item.

You’ll find the code that generates the window shown in Figure 7-13 in the
MenuAndPopup project. The code varies little from that shown in the coverage of
this chapter’s TwoMenus project. But the MyHelloWindow constructors are differ-
ent. The MenuAndPopup project uses the following code for adding a second
menu to the menubar:

BMenuField *menuField;
BPopUpMenu *popUpMenu;
BRect popUpMenuRect(10.0, 40.0, 120.0, 70.0);
const char *popUpName = "VisualPopUp";
const char *popUpLabel = NULL;

popUpMenu = new BPopUpMenu("Visual");
menuField = new BMenuField(popUpMenuRect, popUpName, popUpLabel, popUpMenu);
AddChild(menuField);
popUpMenu->AddItem(new BMenuItem("Draw Circles",
 new BMessage(MENU_DRAW_CIRCLES_MSG)));
popUpMenu->AddItem(new BMenuItem("Draw Squares",
 new BMessage(MENU_DRAW_SQUARES_MSG)));

Figure 7-13. A menu field before, during, and after a menu item selection

Pop-up Menus 267

Altering the Label/Pop-up Menu Divider

While no physical vertical line divides a menu field’s label from its pop-up menu,
there is indeed a defined boundary. By default, half of a menu field’s width is
devoted to the label, and half is assigned to the menu. Consider this snippet:

BPopUpMenu *popUpMenu;

popUpMenu = new BPopUpMenu("Click Here");
popUpMenu->AddItem(new BMenuItem("Small", new BMessage(SML_MSG)));
popUpMenu->AddItem(new BMenuItem("Medium", new BMessage(MED_MSG)));
popUpMenu->AddItem(new BMenuItem("Large", new BMessage(LRG_MSG)));
popUpMenu->AddItem(new BMenuItem("Extra Large", new BMessage(XLG_MSG)));

BMenuField *menuField;
BRect popUpMenuRect(30.0, 25.0, 150.0, 50.0);

menuField = new BMenuField(popUpMenuRect, "PopUp", "Size", popUpMenu);
AddChild(menuField);

This code creates a pop-up menu and adds it to a menu field. The BMenuField
object has a width of 120 pixels (150.0 – 30.0). Thus the menu field divider, which
is given in coordinates local to the menu field’s view, would be 60.0. As shown in
the top two windows of Figure 7-14, this 1:1 ratio isn’t always appropriate. Here
the menu field label “Size” requires much less space than the pop-up menu name
of “Click Here.” Because the pop-up menu is constrained to half the menu field
width, the pop-up name is automatically condensed—as is the “Extra Large” menu
item after it is selected.

To devote more or less of a menu field to either the label or pop-up menu, use
the BMenuField function SetDivider(). Pass this routine a floating-point value
to be used as the new divider. This one argument should be expressed in coordi-
nates local to the menu field. Consider our current example, which produces a
menu field with a width of 120 pixels. To move the divider from its halfway point
of 60 pixels to 30 pixels from the left edge of the menu field, pass a value of 30.0
to SetDivider():

menuField->SetDivider(30.0);

The bottom two windows in Figure 7-14 show how the menu field looks after
moving its divider. The pop-up menu now starts 30 pixels from the left of the
menu field—just a few pixels to the left of the “Size” label. The pop-up menu now
has room to expand horizontally; rather than being limited to 60 pixels in width,
the menu can now occupy up to 90 of the menu field’s 120 pixels.

You could use trial and error to find the amount of room appropriate for your pop
up’s label. But of course you’ll instead rely on the BView function
StringWidth()—the BMenuField class is derived from the BView class, so any

268 Chapter 7: Menus

view member function can be invoked by a pop-up menu object. When passed a
string, StringWidth() returns the number of pixels that string requires (based on
the characteristics of the font currently used by the BMenuField object). For
instance:

#define LABEL_MARGIN5.0
float labelWidth;

labelWidth = menuField->StringWidth("Size");
menuField->SetDivider(labelWidth + LABEL_MARGIN);

The above snippet determines the width of the string “Size” (the label used in the
previous snippets), then uses that pixel width in setting the width of the space
used to hold the label. Because the label starts a few pixels in from the left edge
of the area reserved for the label, a few pixels are added as a margin, or buffer. If
that wasn’t done, the divider would be placed somewhere on the last character in
the label, cutting a part of it off.

Submenus
A menu item can act as a submenu, or hierarchical menu—a menu within a
menu. To operate a submenu, the user simply clicks on the submenu name,
exposing a new menu of choices. To choose an item from the submenu, the user
keeps the mouse button held down, slides the cursor onto the item, and releases
the mouse button. Figure 7-15 provides an example of a submenu. Here a separa-
tor item and a submenu have been added to the Visual menu that was introduced
in this chapter’s TwoMenus project. The Number of Shapes submenu consists of
three items: 10, 20, and 30.

Figure 7-14. A menu field with its default divider (top) and an adjusted divider (bottom)

Submenus 269

Creating a Submenu

A submenu is nothing more than a BMenu object that is added to another BMenu
object in place of a menu item. Consider an Animals menu that has five types of
animals for its menu items: armadillo, duck, labrador, poodle, and shepherd.
Because three of the five animal types fall into the same category—dogs—this
example would be well served by grouping the three dog items into a submenu.
Figure 7-16 shows what the Animals menu would look like with a submenu, and
this next snippet shows the code needed to produce this menu:

BMenu *menu;
BMenu *subMenu;

menu = new BMenu("Animals");
menuBar->AddItem(menu);
menu->AddItem(new BMenuItem("Armadillo", new BMessage(ARMADILLO_MSG)));
subMenu = new BMenu("Dogs");
menu->AddItem(subMenu);
subMenu->AddItem(new BMenuItem("Labrador", new BMessage(LAB_MSG)));
subMenu->AddItem(new BMenuItem("Poodle", new BMessage(POODLE_MSG)));
subMenu->AddItem(new BMenuItem("Shepherd", new BMessage(SHEPHERD_MSG)));
menu->AddItem(new BMenuItem("Duck", new BMessage(DUCK_MSG)));

Notice in this snippet that while I’ve given the variable used to represent the sub-
menu the name subMenu, it really is nothing more than a BMenu object. The items
in the Dogs submenu were added the same way as the items in the Animal
menu—by invoking the BMenu member function AddItem().

Submenu Example Project

The MenusAndSubmenus project builds an application that displays the window
shown back in Figure 7-15. Most of the code in this project comes from the

Figure 7-15. An example of a submenu

270 Chapter 7: Menus

TwoMenus project, along with new code supporting the new submenu. The
MyHelloWindow class now holds a new int32 data member named fNumShapes
that keeps track of the number of circles or squares that should be used when
Draw Circles or Draw Squares is selected:

class MyHelloWindow : public BWindow {
 ...
 ...
 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep;
 BMenuBar *fMenuBar;
 int32 fNumBeeps;
 int32 fNumShapes;
};

The MyHelloWindow constructor includes new code that adds a separator item to
the Visual menu and creates and initializes the Number of Shapes submenu that’s
now housed as the last item in the Visual menu. Here’s a part of the
MyHelloWindow constructor:

BMenu *menu;
BMenu *subMenu;
BMenuItem *menuItem;

// create menubar and add to window

// create Audio menu, add to menubar, add items to it, set
// to radio mode and mark one item

menu = new BMenu("Visual");
fMenuBar->AddItem(menu);
menu->AddItem(new BMenuItem("Draw Circles",
 new BMessage(MENU_DRAW_CIRCLES_MSG)));
menu->AddItem(new BMenuItem("Draw Squares",
 new BMessage(MENU_DRAW_SQUARES_MSG)));

menu->AddSeparatorItem();

subMenu = new BMenu("Number of Shapes");
menu->AddItem(subMenu);

Figure 7-16. Categorizing things using a menu and submenu

Submenus 271

subMenu->AddItem(menuItem = new BMenuItem("10",
 new BMessage(MENU_10_SHAPES_MSG)));
subMenu->AddItem(new BMenuItem("20", new BMessage(MENU_20_SHAPES_MSG)));
subMenu->AddItem(new BMenuItem("30", new BMessage(MENU_30_SHAPES_MSG)));

subMenu->SetRadioMode(true);
menuItem->SetMarked(true);
fNumShapes = 10;

As shown, a submenu can be set to radio mode, and an item in the submenu can
be marked, just as is done for a menu that’s added to a menubar.

The MessageReceived() function needs three new case sections—one to han-
dle each of the three new messages that result from the submenu item selections:

case MENU_10_SHAPES_MSG:
 fNumShapes = 10;
 break;

case MENU_20_SHAPES_MSG:
 fNumShapes = 20;
 break;

case MENU_30_SHAPES_MSG:
 fNumShapes = 30;
 break;

Two of the existing case sections in MessageReceived() need modification.
Now the number of shapes to use in the drawing of the concentric circles or
squares gets passed to the MyDrawView member function SetViewPicture():

case MENU_DRAW_CIRCLES_MSG:
fMyView->SetViewPicture(PICTURE_CIRCLES, fNumShapes);
 fMyView->Invalidate();
 break;

case MENU_DRAW_SQUARES_MSG:
fMyView->SetViewPicture(PICTURE_SQUARES, fNumShapes);
 fMyView->Invalidate();
 break;

The MyDrawView member function SetViewPicture() makes use of the new
parameter as the index that determines how many times InsetRect() and
StrokeRect() are called.

272

Chapter 8

In this chapter:
• Fonts
• Simple Text
• Editable Text
• Scrolling8

Text 8.

The BeOS makes it simple to display text in a view—you’ve seen several exam-
ples of calling the BView functions SetFont() and DrawString() to specify
which font a view should use and then draw a line of text. This approach works
fine for small amounts of plain text; your application, however, is more likely to
be rich in both graphics and text—so you’ll want to take advantage of the BFont,
BStringView, BTextView, BScrollBar, and BScrollView classes.

The BFont class creates objects that define the characteristics of fonts. You create
a BFont object based on an existing font, then alter any of several characteristics.
The BeOS is quite adept at manipulating fonts. You can alter basic font features
such as size and spacing, but you can also easily change other more esoteric font
characteristics such as shear and angle of rotation. You can use this new font in
subsequent calls to DrawString(), or as the font in which text is displayed in
BStringView, BTextView, or BScrollView objects.

A BStringView object displays a line of text, as a call to the BView function
DrawString() does. Because the text of a BStringView exists as an object, this
text knows how to update itself—something that the text produced by a call to
DrawString() doesn’t know how to do.

More powerful than the BStringView class is the BTextView class. A BTextView
object is used to display small or large amounts of editable text. The user can per-
form standard editing techniques (such as cut, copy, and paste) on the text of a
BTextView object. And the user (or the program itself) can alter the font or font
color of some or all of the text in such an object.

If the text of a BTextView object extends beyond the content area of the object, a
scrollbar simplifies the user’s viewing. The BScrollBar class lets you add a scroll-
bar to a BTextView. Before adding that scrollbar, though, you should consider

Fonts 273

creating a BScrollView object. As its name implies, such an object has built-in
support for scrollbars. Create a BTextView object to hold the text, then create a
BScrollView object that names the text view object as the scroll view’s target. Or,
if you’d like to scroll graphics rather than text, name a BView object as the target
and then include a BPicture in that BView. While this chapter’s focus is on text,
it does close with an example adding scrollbars to a view that holds a picture.

Fonts
In the BeOS API, the BFont class defines the characteristics of a font—its style,
size, spacing, and so forth. While the BFont class has not been emphasized in
prior chapters, it has been used throughout this book. Every BView object (and
thus every BView-derived object) has a current font that affects text displayed in
that view. In previous examples, the BView-derived MyDrawView class used its
AttachedToWindow() function to call a couple of BView functions to adjust the
view’s font: SetFont() to set the font, and SetFontSize() to set the font’s size:

void MyDrawView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);
}

A view’s current font is used in the display of characters drawn using the BView
function DrawString(). Setting a view’s font characteristics in the above fashion
affects text produced by calls to DrawString() in each MyDrawView object.

The above snippet illustrates that the examples to this point have done little to
alter the look of a font. Making more elaborate modifications is an easy task. Later
in this chapter, you’ll use some of the following techniques on text displayed in
text view objects—editable text objects based on the BTextView class.

System Fonts

When designing the interface for your application, you’ll encounter instances
where you want a consistent look in displayed text. For example, your applica-
tion may have a number of windows that include instructional text. In such a case,
you’ll want the text to have the same look from window to window. To ensure
that your application can easily do this, the BeOS defines three fonts guaranteed to
exist and remain constant for the running of your application.

The three global system fonts

The three constant fonts, or global system fonts, are BFont objects. When an appli-
cation launches, these BFont objects are created, and three global pointers are

274 Chapter 8: Text

assigned to reference them. Table 8-1 shows these global BFont objects.
Figure 8-1 shows a window running on my machine; the figure includes a line of
text written in each of the three system fonts.

Contradictory as it sounds, the user can change the font that’s used for any of the
global system fonts. Figure 8-2 shows that the FontPanel preferences program lets
the user pick a different plain, bold, or fixed font. This means that your applica-
tion can’t count on a global font pointer (such as be_plain_font) always repre-
senting the same font on all users’ machines. You can, however, count on a glo-
bal font pointer to always represent only a single font on any given user’s
machine—regardless of which font that is. So while you may not be able to antici-
pate what font the user will view when you make use of a global font pointer in
your application, you are assured that the user will view the same font each time
that global font pointer is used by your application.

Using a global system font

You’ve already seen how to specify one of the global fonts as the font to be used
by a particular view: just call the BView function SetFont() within one of the
view’s member functions. The AttachedToWindow() snippet that appears above
provides an example. That method initializes all of the objects of a particular class
to use the same font. In the above example, all MyDrawView objects will initially
display text in the font referenced by be_bold_font. For a particular view to have
its current font set to a different system font, have that view call SetFont() after
the view has been created:

Table 8-1. Global Fonts and Their Usage

BFont Global Pointer Common Font Usage

be_plain_font Controls, such as checkboxes and buttons, have their labels dis-
played in this font. Menu items also appear in this font.

be_bold_font Window titles appear in this font.

be_fixed_font This font is used for proportional, fixed-width characters.

Figure 8-1. An example of text produced from the three global fonts

Fonts 275

MyDrawView *theDrawView;

theDrawView = new MyDrawView(frameRect, "MyDrawView");
theDrawView->SetFont(be_plain_font);

While a BeOS machine may have more than the three system fonts installed, your
application shouldn’t make any font-related assumptions. You can’t be sure every
user has a non-system font your application uses; some users may experience
unpredictable results when running your application. If you want your program to
display text that looks different from the global fonts (such as a very large font like
48 points), you can still use a global font to do so, as the next section illustrates.

Your program shouldn’t force the user to have a particular non-
system font on his or her machine, but it can give the user the
option of displaying text in a non-system font. Consider a word pro-
cessor you’re developing. The default font should be be_plain_
font. But your application could have a Font menu that allows for
the display of text in any font on the user’s computer. Querying the
user’s machine for available fonts is a topic covered in the BFont
section of the Interface Kit chapter of the Be Book.

Figure 8-2. The FontPanel preferences application window

276 Chapter 8: Text

Global fonts are not modifiable

A global font is an object defined to be constant, so it can’t be altered by an appli-
cation. If a program could alter a global font, the look of text in other applications
would be affected. Instead, programs work with copies of global fonts. While call-
ing a BView function such as SetFontSize() may seem to be changing the size
of a font, it’s not. A call to SetFontSize() simply specifies the point size at
which to display characters. The font itself isn’t changed—the system simply cal-
culates a new size for each character and displays text using these new sizes. Con-
sider this snippet:

MyDrawView *drawView1;
MyDrawView *drawView2;

drawView1 = new MyDrawView(frameRect1, "MyDrawView1");
drawView1->SetFont(be_bold_font);
drawView1->SetFontSize(24);

drawView2 = new MyDrawView(frameRect2, "MyDrawView2");
drawView2->SetFont(be_bold_font);

drawView1->MoveTo(20.0, 20.0);
drawView1->DrawString("This will be bold, 24 point text");

drawView2->MoveTo(20.0, 20.0);
drawView2->DrawString("This will be bold, 12 point text");

This code specifies that the MyDrawView object drawView1 use the be_bold_
font in the display of characters. The code also sets this object to display these
characters in a 24-point size. The second MyDrawView object, drawView2, also
uses the be_bold_font. When drawing takes place in drawView1, it will be 24
points in size. A call to DrawString() from drawView2 doesn’t result in 24-point
text, though. That’s because the call to SetFontSize() didn’t alter the font be_
bold_font itself. Instead, it only marked the drawView2 object to use 24 points
as the size of text it draws.

Making global fonts unmodifiable is a good thing, of course. Having a global font
remain static means that from the time your application launches until the time it
terminates, you can always rely on the font having the same look. Of course, there
will be times when your application will want to display text in a look that varies
from that provided by any of the three global fonts. That’s the topic of the next
section.

Altering Font Characteristics

If you want to display text in a look that doesn’t match one of the system fonts,
and you want to be able to easily reuse this custom look, create your own BFont

Fonts 277

object. Pass the BFont constructor one of the three global system fonts and the
constructor will return a copy of it to your application:

BFont theFont(be_bold_font);

The BFont object theFont is a copy of the font referenced by be_bold_font, so
theFont can be modified. To do that, invoke the BFont member function appro-
priate for the characteristic to change. For instance, to set the font’s size, call
SetSize():

theFont.SetSize(15.0);

A look at the BFont class declaration in the Font.h BeOS API header file hints at
some of the other modifications you can make to a BFont object. Here’s a partial
listing of the BFont class:

class BFont {
 public:
 BFont();
 BFont(const BFont &font);
 BFont(const BFont *font);

 void SetFamilyAndStyle(const font_family family,
 const font_style style);
 void SetFamilyAndStyle(uint32 code);
 void SetSize(float size);
 void SetShear(float shear);
 void SetRotation(float rotation);
 void SetSpacing(uint8 spacing);
 ...
 void GetFamilyAndStyle(font_family *family, font_style *style)
 const;
 uint32 FamilyAndStyle() const;
 float Size() const;
 float Shear() const;
 float Rotation() const;
 uint8 Spacing() const;
 uint8 Encoding() const;
 uint16 Face() const;
 ...
 float StringWidth(const char *string) const;
 ...
}

For each member function that sets a font trait, there is a corresponding member
function that returns the same trait. An examination of a few of these font charac-
teristics provides a basis for understanding how fonts are manipulated.

Font size

An example of setting a BFont object’s point size was shown above. An example
of determining the current point size of that same BFont object follows.

278 Chapter 8: Text

float theSize;

theSize = theFont.Size();

You’ve already seen that in order for a view to make use of a font, that font needs
to become the view’s current font. The BView function SetFont() performs that
task. Numerous examples have demonstrated this routine’s use in setting a view’s
font to one of the global system fonts, but you can use SetFont() with any
BFont object. Here, one view is having its font set to the global system font be_
plain_font, while another is having its font set to an application-defined BFont
object:

BFont theFont(be_bold_font);

theFont.SetSize(20.0);
drawView1->SetFont(&theFont);

drawView2->SetFont(be_plain_font);

This snippet demonstrates how to replace whatever font a view is currently using
with another font—the drawView1 view was making use of some font before the
call to SetFont(). There will be times when you won’t want to replace a view’s
font, but rather simply alter one or more of the traits of the view’s current font. To
do that, call the BView function GetFont() to first get a copy of the view’s cur-
rent font. Make the necessary changes to this copy, then call SetFont() to make
it the view’s new current font. Here, a view’s current font has its size changed:

BFont theFont;

theDrawView->GetFont(&theFont);
theFont.SetSize(32.0);
theDrawView->SetFont(&theFont);

Font shear

A font’s shear is the slope, or angle, at which the font’s characters are drawn. Pass
the BFont function SetShear() a value in degrees and the routine will use it to
adjust the amount of slope characters have. The range of values SetShear()
accepts is 45.0 to 135.0. As Figure 8-3 shows, this angle is relative to the baseline
on which characters are drawn. You’ll also note that the degrees are measured
clockwise. A value of 45.0 produces the maximum slant to the left, while a value
of 135.0 produces the maximum slant to the right. The following code generates
the three strings shown in Figure 8-3:

BFont theFont(be_plain_font);

theFont.SetSize(24.0);
theFont.SetShear(45.0);
theView->SetFont(&theFont);
theView->MovePenTo(110.0, 60.0);

Fonts 279

theView->DrawString("Shear 45");

theFont.SetShear(90.0);
theView->SetFont(&theFont);
theView->MovePenTo(110.0, 140.0);
theView->DrawString("Shear 90");

theFont.SetShear(135.0);
theView->SetFont(&theFont);
theView->MovePenTo(110.0, 220.0);
theView->DrawString("Shear 135");

Font rotation

The SetRotation() function in the BFont class makes it easy to draw text that’s
rotated to any degree. Pass SetRotation() a value in degrees, and subsequent
text drawn to the view will be rotated. The degrees indicate how much the base-
line on which text is drawn should be rotated. Figure 8-4 shows that the angle is
relative to the original, horizontal baseline. Degrees are measured clockwise: a
positive rotation means that subsequent text will be drawn at an angle upward,
while a negative rotation means that text will be drawn at an angle downward.
This next snippet produces the text shown in the window in Figure 8-4:

BFont theFont(be_plain_font);

theFont.SetSize(24.0);
theFont.SetRotation(45.0);
theView->SetFont(&theFont);
theView->MovePenTo(70.0, 110.0);
theView->DrawString("Rotate 45");

theFont.SetRotation(-45.0);

Figure 8-3. Output of text when the font’s shear is varied

280 Chapter 8: Text

theView->SetFont(&theFont);
theView->MovePenTo(190.0, 110.0);
theView->DrawString("Rotate -45");

Fonts Example Project

The FontSetting project demonstrates how to create BFont objects and use them
as a view’s current font. As Figure 8-5 shows, this example also demonstrates how
to set the angle at which text is drawn, as well as how to rotate text.

I won’t need a sophisticated program to show off a few of the things that can be
done with fonts; a single menuless window will do. The FontSetting project’s
MyHelloWindow class has only one data member: the familiar drawing view
fMyView. The MyDrawView class has no data members. Both the MyDrawView

Figure 8-4. Output of text when the font’s rotation is varied

Figure 8-5. The FontSetting example program’s window

Fonts 281

constructor and the MyDrawView function AttachedToWindow() are empty. The
only noteworthy function is the MyDrawView routine Draw(), shown here:

void MyDrawView::Draw(BRect)
{
 SetFont(be_plain_font);
 SetFontSize(18);
 MovePenTo(20, 30);
 DrawString("18 point plain font");

 SetFont(be_bold_font);
 SetFontSize(18);
 MovePenTo(20, 60);
 DrawString("18 point bold font");

 SetFont(be_fixed_font);
 SetFontSize(18);
 MovePenTo(20, 90);
 DrawString("18 point fixed font");

 BFont font;
 GetFont(&font);
 font.SetShear(120.0);
 SetFont(&font);
 MovePenTo(20, 120);
 DrawString("18 point 60 shear fixed font");

 SetFont(be_bold_font);
 GetFont(&font);
 font.SetSize(24.0);
 font.SetRotation(-45.0);
 SetFont(&font);
 MovePenTo(20, 150);
 DrawString("rotated");
}

The code in Draw() falls into five sections, each section ending with a call to
DrawString(). Each of the first three sections:

• Sets the view’s font to one of the three system fonts

• Sets the view to draw text in 18-point size

• Moves the pen to the starting location for drawing

• Draws a string

To draw each of the first three lines of text in 18-point size, note that after each
call to SetFont(), SetFontSize() needs to be called. That’s because a call to
SetFont() uses all of the characteristics of the passed-in font. Thus, the second
call to SetFont()—the call that sets the drawing view to draw in be_bold_
font—sets the view to draw text in whatever point size the user defines for the
be_bold_font (defined for the bold font in the FontPanel preferences window).

282 Chapter 8: Text

The fourth code section demonstrates how to change one aspect of a view’s cur-
rent font without affecting the font’s other attributes. A call to GetFont() returns a
copy of the view’s current font. A call to the BFont function SetShear() alters
the shear of the font. A call to SetFont() then establishes this font as the view’s
new current font.

The final section of code provides a second example of changing some character-
istics of a view’s current font without overwriting all of its traits. Here the view’s
font is set to be_bold_font, a copy is retrieved, and the size and rotation of the
copied font are changed. This new font is then used as the view’s current font
before drawing the string “rotated.”

Simple Text
Throughout this book you’ve seen that you can draw a string in any view by
invoking the BView’s DrawString() function. DrawString() is a handy routine
because it’s easy to use—just call MovePenTo() or MovePenBy() to establish the
starting point for a string, then pass DrawString() the text to draw. Drawing text
with DrawString() has one distinct shortcoming, though. Unless the call is made
from within the view’s Draw() function, the text drawn by DrawString() won’t
automatically be updated properly whenever all or part of the text comes back
into view after being obscured. A call to DrawString() simply draws text—it
doesn’t create a permanent association between the text and the view, and it
doesn’t create any kind of string object with the power to update itself. The
BStringView class exists to overcome these deficiencies.

A BStringView object draws a single line of text, just as DrawString() does.
Unlike the DrawString() text, however, the BStringView object’s text automati-
cally gets updated whenever necessary. While the text displayed by the
BStringView object can be changed during runtime (see the “Setting the text in a
string” section ahead), it isn’t user-editable. It also doesn’t word-wrap, and it can’t
be scrolled. That makes a BStringView object ideal for creating simple, static text
such as that used for a label, but undesirable for displaying large amounts of text
or user-editable text. For working with more sophisticated text objects, refer to the
description of the BTextView class in this chapter’s “Editable Text” section.

The BStringView Class

Create a BStringView object by invoking the BStringView constructor. The
BStringView class is derived from the BView class. In creating a new string view
object, the BStringView constructor passes all but its text parameter on to the
BView constructor:

BStringView(BRect frame,
 const char *name,

Simple Text 283

 const char *text,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW)

The frame parameter is a rectangle that defines the boundaries of the view. The
text displayed by the BStringView object won’t word wrap within this rectangle,
so it must have a width sufficient to display the entire string. The name parameter
defines a name by which the view can be identified at any time. The
resizingMode parameter specifies the behavior of the view in response to a
change in the size of the string view’s parent view. The flags parameter is a
mask consisting of one or more Be-defined constants that determine the kinds of
notifications the view is to respond to.

The text parameter establishes the text initially displayed by the BStringView
object. The text can be passed between quotes or, as shown below, a variable of
type const char * can be used as the text argument. After creating the string
view object, call AddChild() to add the new object to a parent view:

BStringView *theString;
BRect stringFrame(10.0, 10.0, 250.0, 30.0);
const char *theText = "This string will be automatically updated";

theString = new BStringView(stringFrame, "MyString", theText);
AddChild(theString);

For simplicity, this snippet hardcodes the string view’s boundary. Alternatively,
you could rely on the StringWidth() function to determine the pixel width of
the string and then use that value in determining the coordinates of the view rect-
angle. In Chapter 7, Menus, this routine was introduced and discussed as a BView
member function. Here you see that the BFont class also includes such a func-
tion. By default, a new BStringView object uses the be_plain_font (which is a
global BFont object), so that’s the object to use when invoking StringWidth().
Here, I’ve modified the preceding snippet to use this technique:

#define FRAME_LEFT 10.0

BStringView *theString;
BRect stringFrame;
const char *theText = "This string will be automatically updated";
float textWidth;

textWidth = be_plain_font->StringWidth(theText);
stringFrame.Set(FRAME_LEFT, 10.0, FRAME_LEFT + textWidth, 30.0);

theString = new BStringView(stringFrame, "MyString", theText);
AddChild(theString);

284 Chapter 8: Text

Manipulating the Text in a String

Once a string view object is created, its text can be altered using a variety of
BStringView member functions.

Setting the text in a string

The text of a BStringView object isn’t directly editable by the user, but the pro-
gram can change it. To do that, invoke the BStringView function SetText(),
passing the new text as the only parameter. In the following snippet, the text of
the string view object created in the previous snippet is changed from “This string
will be automatically updated” to “Here’s the new text”:

theString->SetText("Here's the new text");

To obtain the current text of a string view object, call the BStringView member
function Text():

const char *stringViewText;

stringViewText = theString->Text();

Aligning text in a string

By default, the text of a BStringView object begins at the left border of the
object’s frame rectangle. You can alter this behavior by invoking the BStringView
member function SetAlignment(). This routine accepts one of three Be-defined
alignment constants: B_ALIGN_LEFT, B_ALIGN_RIGHT, or B_ALIGN_CENTER. Here
the left-aligned default characteristic of the text of the BStringView object
theString is altered such that it is now right-aligned:

theString->SetAlignment(B_ALIGN_RIGHT);

You can obtain the current alignment of a BStringView object’s text by invoking
the BStringView function Alignment(). This routine returns a value of type
alignment. Unsurprisingly, the constants B_ALIGN_LEFT, B_ALIGN_RIGHT, and
B_ALIGN_CENTER are of this type, so you can compare the returned value to one
or more of these constants. Here, the alignment of the text in a BStringView
object is checked to see if it is currently centered:

alignment theAlignment;

theAlignment = theString->Alignment();

if (theAlignment == B_ALIGN_CENTER)
 // you're working with text that is centered

Simple Text 285

Changing the look of the text in the string

A new BStringView object’s text is displayed in black and in the system plain
font. A BStringView object is a BView object, so BView member functions such
as SetHighColor(), SetFont(), and SetFontSize() can be invoked to change
the characteristics of a string view object’s text. Here, the color of the text of a
BStringView object is changed from black to red by altering the string view’s
high color. The text’s font and size are changed as well:

rgb_color redColor = {255, 0, 0, 255};
theString->SetHighColor(redColor);
theString->SetFont(be_bold_font);
theString->SetFontSize(18);

You can make more sophisticated changes to the look of the text displayed in a
BStringView object by creating a BFont object, modifying any of the font’s char-
acteristics (using the techniques shown in this chapter’s “Fonts” section), and then
using that font as the BStringView object’s font. Here, the font currently used by
a string view object is retrieved, its shear changed, and the altered font is again
used as the string view object’s font:

BFont theFont;

theString->GetFont(&theFont);
theFont.SetShear(100.0);
theString->SetFont(&theFont);

String View Example Project

The StringView project produces the window shown in Figure 8-6. The “Here’s the
new text” string is a BStringView object, so the text is automatically redrawn
after the user obscures the window and then reveals it again. The Text menu
holds a single item named Test that, when selected, does nothing more than gen-
erate a system beep. Subsequent examples in this chapter add to this menu.

The BStringView object will be added to the window’s main view—the win-
dow’s one MyDrawView object. To make it easy for you to manipulate the string
later in the program, I keep track of the string by making it a data member in the
MyDrawView class.

Figure 8-6. The StringView example program’s window

286 Chapter 8: Text

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);

 private:
 BStringView *fString;
};

The BStringView object’s frame rectangle has a left boundary of 10 pixels. The
BStringView object’s parent view is the window’s fMyView view. The width of
the MyDrawView fMyView is the same as the window, so the default state for the
BStringView text has the text starting 10 pixels from the left edge of the win-
dow. Figure 8-6 makes it clear that this isn’t the starting point of the text. A call to
SetAlignment() is responsible for this discrepancy—the string view object’s text
has been changed to right-aligned. The text’s look has been changed from its
default state by calling the BView functions SetFont() and SetFontSize(). You
can’t tell from Figure 8-6 that the text appears in red rather than black. It’s a call to
SetHighColor() that makes this color change happen. Here’s the StringView
project’s MyDrawView constructor, which shows all the pertinent code:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect stringFrame(10.0, 10.0, 250.0, 30.0);

 fString = new BStringView(stringFrame, "MyString",
 "This string will be automatically updated");
 AddChild(fString);

 fString->SetText("Here's the new text");

 fString->SetAlignment(B_ALIGN_RIGHT);

 rgb_color redColor = {255, 0, 0, 255};
 fString->SetHighColor(redColor);

 fString->SetFont(be_bold_font);
 fString->SetFontSize(18);
}

Editable Text
A BStringView object is ideal for displaying a small amount of uneditable text.
When your application needs to display a larger amount of text that is user-
editable, though, it’s time to switch to a BTextView object. A BTextView object
automatically implements keyboard editing, and makes it easy to add menu edit-

Editable Text 287

ing. And while a text view object initially displays all its text in a single font and a
single color, you can easily alter the object to support multiple fonts and multiple
colors—even within the same paragraph.

The BTextView Class

The BTextView class used to create an editable text object is derived from the
BView class. So, as expected, several of the BTextView constructor parameters
will be immediately familiar to you:

BTextView(BRect frame,
 const char *name,
 BRect textRect,
 uint32 resizingMode,
 uint32 flags)

The frame, name, and resizingMode parameters serve the same purposes as they
do for the BView class. The flags parameter is made up of one or more Be-
defined constants that determine the kinds of notifications the view is to respond
to. Regardless of which constant or constants you pass as the flags parameter,
the BTextView constructor goes behind your back to add a couple more con-
stants before forwarding flags to the BView constructor it invokes. These two
BTextView-added constants are B_FRAME_EVENTS, to allow the BTextView object
to reformat its text when it is resized, and B_PULSE_NEEDED, to allow the text
insertion caret to blink properly.

The one BTextView constructor parameter unique to the BTextView class is
textRect. This rectangle specifies the boundaries for the text that will eventually
be placed in the BTextView object.

BTextView frame and text rectangles

At first glance, the purpose of the BTextView constructor’s textRect rectangle
may seem to be redundant—the frame parameter is also a boundary-defining rect-
angle. Here’s the difference: the frame rectangle defines the size of the
BTextView object, as well as where the BTextView object resides in its parent
view. The textRect parameter defines the size of the text area within the
BTextView object, and where within the BTextView object this text area is to be
situated. By default, a BTextView object has a frame the size of the frame rectan-
gle drawn around it. The textRect rectangle doesn’t have a frame drawn around
it. Thus, the textRect rectangle provides for a buffer, or empty space, surround-
ing typed-in text and the BTextView object’s frame. Figure 8-7 illustrates this.

In Figure 8-7, the dark-framed rectangle represents the frame rectangle, the first
parameter to the BTextView constructor. The light-framed rectangle represents the
textRect rectangle. Neither of these rectangles would be visible to the user; I’ve
shown them in the figure only to make it obvious where their boundaries are in

288 Chapter 8: Text

this particular example. The arrows would not be in the window either—I’ve
added them to make it clear that the coordinates of the textBounds rectangle are
relative to the viewFrame rectangle. Here’s the code that sets up a BTextView
object like the one shown in Figure 8-7:

BTextView *theTextView;
BRect viewFrame(30.0, 30.0, 200.0, 110.0);
BRect textBounds(20.0, 20.0, 130.0, 45.0);

theTextView = new BTextView(viewFrame, "TextView", textBounds,
 B_FOLLOW_NONE, B_WILL_DRAW);
AddChild(theTextView);

In this snippet, the viewFrame rectangle defines the text view object frame to be
170 pixels wide by 80 pixels high. The textBounds rectangle specifies that the
first character typed into the text view object will have 20 pixels of white space
between the object’s left edge and the character and 20 pixels of white space
between the object’s top edge and the top of the character. The textBounds rect-
angle’s right boundary, 130, means there will be 40 pixels of white space between
the end of a line of text and the text object’s right boundary (see Figure 8-7).

While I’ve discussed at length the BTextView constructor parameters, I’m com-
pelled to elaborate just a bit more on the two rectangles. Figure 8-7 and the
accompanying code snippet exhibit a text object whose text area rectangle pro-
vides large and non-uniform borders between it and the text object itself. But it’s
much more typical to define a text area rectangle that has a small, uniform bor-
der. This example exaggerated the border size simply to make the relationship
between the two rectangles clear.

Another point to be aware of is that the top and bottom coordinates of the text
area rectangle become unimportant as the user enters text that exceeds the size of
the text area rectangle. The bottom coordinate of the text area rectangle is always
ignored—the text view object will accept up to 32K of text and will automatically

Figure 8-7. A BTextView object consists of two rectangles

Editable Text 289

scroll the text as the user types, always displaying the currently typed characters.
And as the text scrolls, the top coordinate of the text area rectangle becomes
meaningless; the text view object will display the top line of scrolling text just a
pixel or so away from the top of the text view object.

Text view example project

The TextView project displays a window like the one shown in Figure 8-8. To
make the text view object’s boundaries clear, the program outlines the object with
a line one pixel in width. As it did for the StringView project, the Text menu holds
a single item named Test. Choosing this item simply generates a system beep.

The text view object will be added to the window-filling MyDrawView, so I’ve
added a BTextView data member to the MyDrawView class:

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);

 private:
 BTextView *fTextView;
};

The normally empty MyDrawView constructor now holds the code to create a
BTextView object. The viewFrame rectangle defines the size and placement of
the text view object. This rectangle is declared outside of the MyDrawView con-
structor because, as you see ahead, it sees additional use in other MyDrawView
member functions. The TEXT_INSET constant is used in establishing the bound-
aries of the text view object’s text area; that area will have a 3-pixel inset from
each side of the text view object itself:

#define TEXT_INSET 3.0

BRect viewFrame(20.0, 20.0, 220.0, 80.0);

Figure 8-8. The TextView example program’s window

290 Chapter 8: Text

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect textBounds;

 textBounds.left = TEXT_INSET;
 textBounds.right = viewFrame.right - viewFrame.left - TEXT_INSET;
 textBounds.top = TEXT_INSET;
 textBounds.bottom = viewFrame.bottom - viewFrame.top - TEXT_INSET;

 fTextView = new BTextView(viewFrame, "TextView", textBounds,
 B_FOLLOW_NONE, B_WILL_DRAW);
 AddChild(fTextView);

 viewFrame.InsetBy(-2.0, -2.0);
}

After using viewFrame to establish the size and placement of the text view object,
this rectangle’s size is expanded by 2 pixels in each direction (recall from
Chapter 5, Drawing, that a negative number as an argument to the BView mem-
ber function InsetBy() moves the affected view’s frame outward in one direc-
tion). This is done in preparation for drawing a border around the text view area.

Clicking on a text view object causes a blinking insertion point caret to appear in
the text area of that object. The programmer can “jump start,” or force, this caret to
appear in a text view object by making the object the focus view. The final setup
work for a MyDrawView object takes place in the AttachedToWindow() member
function, so that’s an appropriate enough place to make a call to the BView func-
tion MakeFocus():

void MyDrawView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(12);

 fTextView->MakeFocus();
}

The AttachedToWindow() calls to SetFont() and SetFontSize()
don’t affect the font used in the text view object. They’re called by
the MyDrawView object, so they affect text drawn directly in such an
object (there just doesn’t happen to be any text drawn in this exam-
ple’s MyDrawView object). To change the font of a text view object,
invoke the BTextView function SetFontAndColor() from the text
view object. Refer to “Text Characteristics,” in this chapter.

Editable Text 291

The MyDrawView constructor ended with the coordinates of the rectangle
viewFrame being enlarged a couple of pixels in each direction. This was done to
define a rectangle with boundaries just outside the boundaries of the text view
object. When used as an argument to StrokeRect(), this rectangle provides a
frame for the text view object. I’ve placed the call to StrokeRect() in the
MyDrawView Draw() function so that this frame always gets appropriately
updated:

void MyDrawView::Draw(BRect)
{
 StrokeRect(viewFrame);
}

You might be tempted to try to surround a text view object with a frame by sim-
ply calling StrokeRect() from the text view object. This won’t work, because the
text view object holds text, not graphics. Instead, draw the frame in the text view
object’s parent view as I’ve done above. The fTextView object was added to the
MyDrawView object, so I draw the text view object’s border in the MyDrawView
object.

Text Editing

By default, the user can select and edit some or all of the text that appears in a
text view object. BTextView member functions, along with several Be-defined
message constants, provide you with a great degree of control over the level of
editing you want to allow in each text view object in a window.

Default text editing

Regardless of which editing menu items you choose to include or not include in
the menubar of the text object object’s parent window, the following text editing
shortcut keys are automatically supported:

• Command-x: Cut

• Command-c: Copy

• Command-v: Paste

• Command-a: Select All

You can verify that this notion of automatic text editing is true in practice by run-
ning the previous example program, TextView. Then type a few characters, select
some or all of it, and press the Command and “X” keys. Even though the Text-
View project includes no text editing menu items and no text editing code, the
selected text will be cut.

292 Chapter 8: Text

You can deny the user the ability to edit text in the text view object by calling the
BTextView function MakeEditable(), passing a value of false:

fTextView->MakeEditable(false);

After disabling text editing, you can again enable editing by calling
MakeEditable() with an argument of true. You can check the current editing
state of a text object by calling IsEditable():

bool canEdit;

canEdit = fTextView->IsEditable();

If you disable text editing for a text object, you may also want to disable text
selection. Like text editing, by default, text in a text object can be selected by
clicking and dragging the mouse. If you disable text editing, the user will be able
to select any number of characters in the text object. Since the user will be able to
select and copy text, but won’t be able to paste copied text back into the view,
this could lead to some confusion. To prevent the user from selecting text by
invoking the BTextView member function MakeSelectable(), pass a value of
false as the sole argument:

fTextView->MakeSelectable(false);

You can enable text selection by again calling MakeSelectable(), this time with
an argument of true. You can check the current text selection state of a text view
object by calling IsSelectable():

bool canSelect;

canSelect = fTextView->IsSelectable();

Menu items and text editing

Users may not intuitively know that a text object automatically handles keyboard
shortcuts for copying, cutting, pasting, and selecting all of the object’s text. When
it comes time to perform text editing, the user will no doubt look in the menus of
a window’s menubar for the basic editing menu items: the Cut, Copy, Paste, and
Select All items. If you include one or more BTextView objects in a window of
your program, you’d be wise to include these four menu items in an Edit menu.

As you’ve seen, a BTextView object automatically provides shortcut key editing—
you don’t need to write any code to enable the shortcut key combinations to
work. The system also automatically supports menu item editing—menu item edit-
ing is easy to enable on a text view object, but you do need to write a little of
your own code. While you don’t do any work to give a text view object shortcut
key editing, you do need to do a little work to give that same object menu edit-
ing. All you need to do is build a menu with any or all of the four basic editing
items. If you include the proper messages when creating the menu items, editing

Editable Text 293

will be appropriately handled without any other application-defined code being
present.

You’re most familiar with the system message : a message that has a corresponding
hook function to which the system passes the message. A different type of mes-
sage the system recognizes and reacts to is the standard message. A standard mes-
sage is known to the system, and may be issued by the system, but it doesn’t have
a hook function. Among the many standard messages the BeOS provides are four
for editing, represented by the Be-defined constants B_CUT, B_COPY, B_PASTE,
and B_SELECT_ALL. This brief definition of the standard message should tide you
over until Chapter 9, Messages and Threads, where this message type is described
in greater detail. The following snippet demonstrates how an Edit menu that holds
a Cut menu item could be created. Assume that this code was lifted from the con-
structor of a BWindow-derived class constructor, and that a menubar referenced by
a BMenuBar object named fMenuBar already exists:

BMenu *menu;
BMenuItem *menuItem;

menu = new BMenu("Edit");
fMenuBar->AddItem(menu);

menu->AddItem(menuItem = new BMenuItem("Cut", new BMessage(B_CUT), 'X'));
menuItem->SetTarget(NULL, this);

Recall from Chapter 7 that the first parameter to the BMenuItem constructor,
label, specifies the new menu item’s label—the text the user sees in the menu.
The second parameter, message, associates a message with the menu item. The
third parameter, shortcut, assigns a shortcut key to the menu item. To let the
menu item be responsible for cutting text, you must pass the Be-defined B_CUT
standard message constant as shown above. The other required step is to set the
currently selected text view object as the destination of the message.

The BInvoker class exists to allow objects to send a message to a BHandler
object. The BMenuItem class is derived from the BInvoker class, so a menu item
object can be invoked to send a message to a target. That’s exactly what happens
when the user selects a menu item. A window object is a type of BHandler (the
BWindow class is derived from BHandler), so it can be the target of a menu item
message. In fact, by default, the target of a menu item is the window that holds
the menu item’s menubar. Typically, a menu item message is handled by the tar-
get window object’s MessageReceived() function, as has been demonstrated at
length in Chapter 7. While having the window as the message recipient is often
desirable, it isn’t a requirement. The BInvoker function SetTarget() can be
invoked by a BInvoker object (such as a BMenuItem object) to set the message
target to any other BHandler object. The above snippet calls SetTarget() to set
the active text view object to be the Cut menu item’s target.

294 Chapter 8: Text

The first parameter to SetTarget() is a BHandler object, while the second is a
BLooper object. Only one of these two parameters is ever used; the other is
always passed a value of NULL. I’ll examine both possibilities next.

If the target object is known at compile time, you can pass it as the first argument
and pass NULL as the second argument. If the window involved in the previous
snippet had a single text view object referenced by an fMyText data member, the
call to SetTarget() could look like this:

menuItem->SetTarget(fMyText, NULL);

If the window has more than one text view object, however, setting an editing
menu item message to target one specific text view object isn’t desirable—select-
ing the menu item won’t have any effect on text that is selected in a text view
object other than the one referenced by fMyText. The remedy in such a case is to
call SetTarget() as shown here:

menuItem->SetTarget(NULL, this);

When SetTarget() is called with a first argument of NULL, the second argument
is a BLooper object. Passing a looper object doesn’t set the looper object itself as
the target—it sets the looper object’s preferred handler to be the target. An object’s
preferred handler is dependent on the object’s type, and can vary as the program
runs. If the above line of code appears in a BWindow-derived class constructor, the
this argument represents the BWindow-derived object being created. In the case
of a BWindow-derived object, the preferred handler is whichever of the window’s
BHandler objects is the focus object when the window receives a message. For
editing, this makes perfect sense—you’ll want an editing operation such as the cut-
ting of text to affect the text in the current text view object.

Earlier I mentioned that the default target of a menu item message is
the menu’s window. In the previous call to SetTarget(), the sec-
ond argument is this, which is the menu’s window. If that makes it
seem like the call to SetTarget() is redundant, keep in mind that
the object passed as the second argument to SetTarget() doesn’t
become the new target. Instead, that object’s preferred handler
becomes the target.

Other editing menu items are implemented in a manner similar to the Cut menu
item. This next snippet adds Cut, Copy, Paste, and Select All menu items to an Edit
menu and, at the same time, provides a fully functional Edit menu that supports
editing operations in any number of text view objects:

BMenu *menu;
BMenuItem *menuItem;

Editable Text 295

menu = new BMenu("Edit");
fMenuBar->AddItem(menu);

menu->AddItem(menuItem = new BMenuItem("Cut", new BMessage(B_CUT), 'X'));
menuItem->SetTarget(NULL, this);
menu->AddItem(menuItem = new BMenuItem("Copy", new BMessage(B_COPY), 'C'));
menuItem->SetTarget(NULL, this);
menu->AddItem(menuItem = new BMenuItem("Paste", new BMessage(B_PASTE), 'V'));
menuItem->SetTarget(NULL, this);
menu->AddItem(menuItem = new BMenuItem("Select All",
 new BMessage(B_SELECT_ALL), 'A'));
menuItem->SetTarget(NULL, this);

The handling of an edit item comes from the standard message (such
as B_CUT) that you use for the message parameter in the invocation
of the BMenuItem constructor—not from the string (such as "Cut")
that you use for the label parameter. While the user will be expect-
ing to see the familiar Cut, Copy, Paste, and Select All menu item
names, you could just as well give these items the names Expunge,
Mimic, Inject, and Elect Every. From a more practical standpoint, a
program designed for non-English speaking people can include
native text in the edit menu.

Text editing menu item example project

The TextViewEdit project is a modification of this chapter’s TextView project. As
shown in Figure 8-9, four menu items have been added to the already present Test
item in the Text menu. For simplicity, I’ve added these four editing items to the
existing Text menu, but your application should stick with convention and include
these items in a menu titled Edit.

Figure 8-9. The TextViewEdit example program’s window

296 Chapter 8: Text

For this TextViewEdit project, the MyDrawView class and the implementation of
the MyDrawView member functions are all unchanged from the TextView project:

• MyDrawView class has a BTextView data member named fTextView.

• The MyDrawView constructor creates a BTextView object and assigns it to
fTextView.

• AttachedToWindow() sets the focus view and sets up a rectangle to serve as
a border for the text view object.

• Draw() draws the text view object’s border.

The modifications to the project are all found in the MyHelloWindow constructor.
Here, the four editing menu items are added to the already present Test menu
item:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 frame.OffsetTo(B_ORIGIN);
 frame.top += MENU_BAR_HEIGHT + 1.0;

 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 BMenu *menu;
 BMenuItem *menuItem;
 BRect menuBarRect;

 menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
 fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
 AddChild(fMenuBar);

 menu = new BMenu("Text");
 fMenuBar->AddItem(menu);

 menu->AddItem(new BMenuItem("Test", new BMessage(TEST_MSG)));
 menu->AddItem(menuItem = new BMenuItem("Cut", new BMessage(B_CUT), 'X'));
 menuItem->SetTarget(NULL, this);
 menu->AddItem(menuItem = new BMenuItem("Copy", new BMessage(B_COPY),
 'C'));
 menuItem->SetTarget(NULL, this);
 menu->AddItem(menuItem = new BMenuItem("Paste", new BMessage(B_PASTE),
 'V'));
 menuItem->SetTarget(NULL, this);
 menu->AddItem(menuItem = new BMenuItem("Select All",
 new BMessage(B_SELECT_ALL), 'A'));
 menuItem->SetTarget(NULL, this);

 Show();
}

Editable Text 297

The MyHelloWindow class includes a MessageReceived() member function that
handles only the first menu item in the Test menu: the Text item. If
MessageReceived() receives a TEST_MSG message, a call to beep() is made.
The system routes the other message types (B_CUT, B_COPY, B_PASTE, and B_
SELECT_ALL) to the focus view (which in this example is the one text view object)
for automatic handling by that view.

Text Characteristics

While the characteristics of the text displayed by a BStringView object can be
altered by invoking BView functions such as SetFont() and SetHighColor(),
the characteristics of the text displayed by a BTextView object should be altered
by invoking member functions of the BTextView class. For instance, to change
either the color or font, or both, of a BTextView object’s text, invoke the
BTextView function SetFontAndColor().

Getting BTextView text characteristics

A new BTextView object’s text is displayed in black and in the system’s current
plain font. A BTextView object is a BView object, so you might expect that
changes to the object’s text would be carried out by BView member functions such
as SetHighColor() and SetFont(). While this is in fact true, it’s important to
note that the calls to these BView functions are made indirectly. That is, the
BTextView class provides its own set of graphics member functions that a
BTextView object should invoke in order to affect the object’s text. Each of these
BTextView functions in turn invokes whatever BView functions are needed in
order to carry out its specific task. The BTextView functions GetFontAndColor()
and SetFontAndColor() are of primary importance in changing the characteris-
tics of text displayed in a text view object.

GetFontAndColor() is your means to accessing a text view object’s current font
so that you can alter its properties. Here’s the prototype:

void GetFontAndColor(BFont *font,
 uint32 *sameProperties,
 rgb_color *color = NULL,
 bool *sameColor = NULL)

GetFontAndColor() returns information about BTextView in its four parame-
ters. After you call GetFontAndColor(), the font parameter holds a copy of the
text view object’s font. The sameProperties parameter is a mask that specifies
which of a number of the text view object’s font properties apply to all of the
characters in the current selection. GetFontAndColor() combines a number of
Be-defined constants to create the mask. For instance, if all of the characters in the

298 Chapter 8: Text

selected text are the same size, a test of the returned value of sameProperties
will reveal that it includes the value of the Be-defined constant B_FONT_SIZE:

// invoke GetFontAndColor() here

if (sameProperties && B_FONT_SIZE)
 // all characters are the same size

If no text is currently selected at the time of the call to
GetFontAndColor(), the sameProperties mask will be set such
that all of the properties test true. This makes sense because all of
the selected characters—all none of them—do indeed share the
same properties!

The third parameter, color, specifies the RGB color in which the text view
object’s text is to be displayed. The color returned in this parameter is that of the
first character in the selected text (or the character following the insertion point if
no text is currently selected). The sameColor parameter indicates whether or not
all of the selected text (or all characters if no text is currently selected) is of the
color returned by the color parameter.

If your only interest is in the font of a text view object, the color and sameColor
parameters can be safely ignored—these two parameters have a default value of
NULL. Here’s an example:

BFont font;
uint32 sameProperties;

fTextView->GetFontAndColor(&font, &sameProperties);

If, instead, your only interest is in the color of a text view object’s text, pass NULL
as the font parameter:

uint32 sameProperties;
rgb_color color;
bool sameColor;

fTextView->GetFontAndColor(NULL, &sameProperties, &color, &sameColor);

Alternatively, you can pass a variable for each of the four arguments, then simply
ignore the returned values of the variables that aren’t of interest.

A call to GetFontAndColor() doesn’t affect a text view object’s text in any way—
it simply returns to your program information about the text. Once you’ve
obtained a font and color, you’ll want to make changes to one or the other, or
both.

Editable Text 299

Setting BTextView text characteristics

After obtaining a copy of a BTextView object’s font, you can make any desired
changes to the font and then pass these changes back to the text view object. The
same applies to the text’s color. The BTextView function SetFontAndColor()
takes care of both of these tasks:

void SetFontAndColor(const BFont *font,
 uint32 properties = B_FONT_ALL,
 rgb_color *color = NULL)

The font, properties, and color parameters are the variables filled in by a pre-
vious call to GetFontAndColor(). In between the calls to GetFontAndColor()
and SetFontAndColor(), invoke one or more BFont functions to change the
desired font trait. For instance, to change the size of the font used to display the
text of a BTextView object named theTextView, invoke the BFont function
SetSize() as shown in the following snippet. Note that because this snippet isn’t
intended to change the color of the text in the theTextView text view object, the
call to GetFontAndColor() omits the color and sameColor parameters:

BFont font;
uint32 sameProperties;

theTextView->GetFontAndColor(&font, &sameProperties);
font.SetSize(24.0);
theTextView->SetFontAndColor(&font, B_FONT_ALL);

In this snippet, the BFont object font gets its value from GetFontAndColor(), is
altered by the call to SetSize(), and then is passed back to the theTextView
object by a call to SetFontAndColor(). The process is not, however, the same
for the sameProperties variable.

Recall that the GetFontAndColor() uint32 parameter sameProperties returns
a mask that specifies which font properties apply to all of the characters in the
current selection. The SetFontAndColor() uint32 parameter properties, on
the other hand, is a mask that specifies which properties of the BFont parameter
passed to SetFontAndColor() should be used in the setting of the text view
object’s font.

Consider the following example: your program declares a BFont variable named
theBigFont and sets a variety of its properties (such as size, rotation, and shear),
but you’d only like SetFontAndColor() to apply this font’s size property to a
view object’s font (perhaps your program has set other characteristics of
theBigFont because it plans to use the font elsewhere as well). To do that, pass
the Be-defined constant B_FONT_SIZE as the second argument to
SetFontAndColor():

BFont theBigFont(be_plain_font);

theBigFont.SetSize(48.0);

300 Chapter 8: Text

theBigFont.SetRotation(-45.0);
theBigFont.SetShear(120.0);
theTextView->SetFontAndColor(&theBigFont, B_FONT_SIZE);

In this snippet, you’ll note that there’s no call to GetFontAndColor(). Unlike pre-
vious snippets, this code doesn’t obtain a copy of the current font used by
theTextView, alter it, and pass the font back to theTextView. Instead, it creates
a new font based on the system font be_plain_font, changes some of that font’s
characteristics, then passes this font to SetFontAndColor(). The important point
to note is that passing B_FONT_SIZE as the second properties mask tells
SetFontAndColor() to leave all of the characteristics of the font currently used
by theTextView unchanged except for its size. The new size will be that of the
first parameter, theBigFont. The font control definitions such as B_FONT_SIZE
are located in the View.h header file.

To change the color of a BTextView object’s text, assign an rgb_color variable
the desired color and then pass that variable as the third parameter to
SetFontAndColor(). Here, the BTextView theTextView is set to display the
characters in the current selection in red:

BFont font;
uint32 sameProperties;
rgb_color redColor = {255, 0, 0, 255};

theTextView->GetFontAndColor(&font, &sameProperties);
theTextView->SetFontAndColor(&font, B_FONT_ALL, &redColor);

Allowing multiple character formats in a BTextView

By default, all of the text that is typed or pasted into a BTextView object shares
the same characteristics. That is, it all appears in the same font, the same size, the
same color, and so forth. If the object is left in this default state, user attempts to
change the characteristics of some of the text will fail—all of the text in the object
will take on whatever change is made to any selected text. To allow for multiple
character formats in a single text view object, pass a value of true to the
BTextView function SetStylable().

theTextView->SetStylable(true);

To reverse the setting and prevent multiple character formats in a text view object,
pass SetStylable() a value of false. Note that in doing this any styles that
were previously applied to characters in the text view will now be lost. To test a
text view object’s ability to support multiple character formats, call the BTextView
function IsStylable():

bool supportsMultipleStyles;

supportsMultipleStyles = theTextView->IsStylable();

Editable Text 301

Changing the background color in a BTextView

Changes to the characteristics of text in a BTextView object are achieved by using
a number of BFont functions in conjunction with the BTextView functions
GetFontAndColor() and SetFontAndColor(). Changes to the background color
of the text view object itself are accomplished by calling an inherited BView func-
tion rather than a BTextView routine. The BView function SetViewColor(),
which was introduced in Chapter 5, is called to change a text view object’s back-
ground. The call changes the background color of the entire text view object (that
is, it changes the background color of the text view object’s boundary or framing
rectangle—a rectangle that includes the text area rectangle). Here, the back-
ground of a BTextView object is changed to pink:

rgb_color pinkColor = {200, 150, 200, 255};
theTextView->SetViewColor(pinkColor);

Aligning text in a BTextView

A characteristic of the text in a BTextView that isn’t dependent on the font is the
text’s placement within the text area of the text view object. By default, the text
the user enters into a BTextView object is left-aligned. You can change the align-
ment by invoking the BTextView member function SetAlignment(). This rou-
tine works just like the BStringView version described earlier in this chapter: it
accepts one of the three Be-defined alignment constants. Pass B_ALIGN_LEFT, B_
ALIGN_RIGHT, or B_ALIGN_CENTER and the text that’s currently in the text view
object’s text rectangle will be appropriately aligned: each line in the text view
object will start at the alignment indicated by the constant. Here, a BTextView
object named theText has its alignment set to centered:

theText->SetAlignment(B_ALIGN_CENTER);

Any text subsequently entered in the affected BTextView object continues to fol-
low the new alignment.

The BTextView member function Alignment() is used to obtain the current
alignment of a text view object’s text. The BTextView version of Alignment()
works just like the BStringView version. In this next snippet, the alignment of
the text in a BTextView object is compared to the B_ALIGN_RIGHT constant to
see if the text is currently right-aligned:

alignment theAlignment;

theAlignment = theText->Alignment();

if (theAlignment == B_ALIGN_RIGHT)
 // the text in this object is right-aligned

302 Chapter 8: Text

Another BTextView function that affects text placement is SetWordWrap(). By
default, the text in a text view object word wraps: typed or pasted text fills the
width of the object’s text rectangle and then continues on the following line. Text
can instead be forced to remain on a single line until a newline character (a hard
return established by a press of the Return key) designates that a new line be
started. Passing SetWordWrap() a value of false turns word wrapping off for a
particular text view object, while passing a value of true turns word wrapping on.
To test the current word wrapping state of a text view object, call the BTextView
function DoesWordWrap().

While you can change the font characteristics (such as size and
color) of individual characters within a BTextView object, you can’t
change the alignment of individual characters, words, or lines of text
within a single BTextView object. The setting of a BTextView
object’s alignment or wrapping affects all characters in the view.

Text characteristics example project

The TextViewFont project demonstrates how to add support for multiple charac-
ter formats in a BTextView object. Figure 8-10 shows a window with a Text menu
and a BTextView object similar to the one appearing in this chapter’s TextView
and TextViewEdit example projects. Making a text selection and then choosing
Alter Text from the Text menu increases the size of the font of the selected text.
For good measure (and to demonstrate the use of color in a BTextView), the Alter
Text menu also changes the color of the selected text from black to red. In
Figure 8-10, the current selection consists of parts of the first and second words of
text, and the Alter Text item has just been selected.

Figure 8-10. The TextViewFont example program’s window

Editable Text 303

A menu item named Alter Text is fine for this simple example, but is
a bit ambiguous for a real-world application. If your own program
includes stylable text, then it should of course include separate
menu items for each possible action. For instance, if your program
allows the user to change the size of selected text, it should have
Increase Size and Decrease Size menu items, or a menu item for
each possible font point size. Similarly, if your program allows the
color of text to be changed, it should have either a separate menu
item for each possible color, or a menu item that brings up a color
control (see Chapter 5 for a discussion of the BColorControl class).

Earlier in this chapter, you saw that a standard editing message such as B_CUT is
assigned to the focus view by using menu-creation code like that shown here:

menu->AddItem(menuItem = new BMenuItem("Cut", new BMessage(B_CUT), 'X'));
menuItem->SetTarget(NULL, this);

You can set application-defined messages to go directly to the focus view in a sim-
ilar manner. Here, FONT_TEST_MSG is an application-defined message type:

menu->AddItem(menuItem = new BMenuItem("Alter Text",
 new BMessage(FONT_TEST_MSG)));
menuItem->SetTarget(NULL, this);

For a standard editing message such as B_CUT, the work in handling the message
is done; the system knows what to do with a Be-defined standard message. For
my own application-defined message, however, a bit more code is needed
because BTextView won’t know how to handle an application-defined FONT_
TEST_MSG. To create a BTextView object that can respond to an application-
defined message, I defined a MyTextView class derived from BTextView. From
MyTextView.h, here’s the new class and the definition of the new message type:

#define FONT_TEST_MSG 'fntt'

class MyTextView : public BTextView {

 public:
 MyTextView(BRect viewFrame, char *name, BRect textBounds);
 virtual void MessageReceived(BMessage* message);
};

The MyTextView class consists of just two functions: a constructor to create a new
object and a version of MessageReceived() that will be capable of handling the
application-defined message. The implementation of these new functions can be
found in MyTextView.cp. From that file, here’s the MyTextView constructor:

MyTextView::MyTextView(BRect viewFrame, char *name, BRect textBounds)
 : BTextView(viewFrame, name, textBounds, B_FOLLOW_NONE, B_WILL_DRAW)
{
}

304 Chapter 8: Text

The MyTextView constructor is empty—it does nothing more than invoke the
BTextView constructor. For this example, I’m satisfied with how a BTextView
object looks and works, so I’ve implemented the MyTextView constructor such
that it simply passes the arguments it receives on to the BTextView constructor.
The real purpose of creating the BTextView-derived class is to create a class that
overrides the BTextView version of MessageReceived(). The new version of
this routine handles messages of the application-defined type FONT_TEST_MSG:

void MyTextView::MessageReceived(BMessage *message)
{
 switch (message->what) {

 case FONT_TEST_MSG:
 rgb_color redColor = {255, 0, 0, 255};
 BFont font;
 uint32 sameProperties;

 GetFontAndColor(&font, &sameProperties);
 font.SetSize(24.0);
 SetFontAndColor(&font, B_FONT_ALL, &redColor);
 break;

 default:
 MessageReceived(message);
 }
}

When an object of type MyTextView receives a FONT_TEST_MSG message,
GetFontAndColor() is called to obtain a copy of the object’s font. The size of the
font is set to 24 points and SetFontAndColor() is called to pass the font back to
the MyTextView object. When calling SetFontAndColor(), the rgb_color vari-
able redColor is included in the parameter list in order to set the MyTextView
object to use a shade of red in displaying text.

As is always the case, it’s important that MessageReceived() include the default
condition that invokes the inherited version of MessageReceived(). The
MyTextView version of MessageReceived() handles only the application-defined
FONT_TEST_MSG, yet a MyTextView object that is the focus view will also be
receiving B_CUT, B_COPY, B_PASTE, and B_SELECT_ALL messages. When the
MyTextView version of MessageReceived() encounters a message of one of
these Be-defined types, it passes it on to the BTextView version of
MessageReceived() for handling.

In this chapter’s previous two examples, TextView and TextViewEdit, the
MyDrawView class included a data member of type BTextView. Here I also

Scrolling 305

include a data member in the MyDrawView class, but I change it to be of type
MyTextView:

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);

 private:
 MyTextView *fTextView;
};

Like the previous example versions of the MyDrawView constructor, the TextView-
Font project’s version of the MyDrawView constructor creates a text view object.
Here, however, the object is of the new MyTextView class type. Before exiting,
the constructor calls the BTextView function SetStylable() to give the new
MyTextView object support for multiple character formats. That ensures that
changes made to the MyTextView object’s text apply to only the current selec-
tion—not to all of the text in the object.

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect textBounds;

 textBounds.left = TEXT_INSET;
 textBounds.right = viewFrame.right - viewFrame.left - TEXT_INSET;
 textBounds.top = TEXT_INSET;
 textBounds.bottom = viewFrame.bottom - viewFrame.top - TEXT_INSET;

 fTextView = new MyTextView(viewFrame, "TextView", textBounds);

 AddChild(fTextView);

 fTextView->SetStylable(true);
}

Scrolling
Text or graphics your application uses may not always fit within the confines of a
view. Enter the scrollbar. The APIs for other operating systems that employ a
graphical user interface include routines to work with scrollbars, but few imple-
ment this interface element as elegantly as the BeOS API does. The BScrollBar
class makes it easy to add one or two scrollbars to any view. Better still, the
BScrollView class creates a bordered object with one or two BScrollBar
objects already properly sized to fit any view you specify. Best of all, scrollbar
operation and updating is all automatic. Scrollbar objects are unique in that they

306 Chapter 8: Text

don’t receive drawing or mouse down messages—the Application Server inter-
cepts these messages and responds accordingly.

As part of the automatic handling of a scrollbar, the Application Server is responsi-
ble for changing the highlighting of a scrollbar. In Figure 8-11, you see the same
scrollbar with two different looks. When the contents of the view a scrollbar is
attached to exceed the size of the view, the scrollbar’s knob appears and the
scrollbar becomes enabled. As the content of the view increases, the scrollbar
knob automatically decreases in size to reflect the lessening amount of the total
text being displayed within the view.

Keep in mind that from the ScrollBar preferences application the
user can control the look and behavior of the scrollbars present in
all applications that run on his or her machine. For instance, the
ScrollBar preferences control whether programs display a scrollbar
with a pair of scroll arrows on each end, or just one. With that in
mind, you’ll note that the look of the scrollbars in this chapter’s fig-
ures differs (compare Figure 8-11 with Figure 8-13).

Scrollbars

To make use of a scrollbar, create a BScrollBar object, designate a different view
to be the scrollbar’s target—the thing to be scrolled—and add the BScrollBar
object to the same parent view as the target view. Or, more likely, create a
BScrollView object and let it do this work for you. Because the scrolling view is
so handy, the “Scrolling” section’s emphasis is on the BScrollView class. A
BScrollView object includes one or two BScrollBar objects, though, so a study
of the BScrollBar class won’t prove to be time wasted.

Figure 8-11. A scrollbar’s look changes as the scrolled view’s content increases

Scrolling 307

The BScrollBar class

A scrollbar object is an instance of the BScrollBar class. Pass six arguments to its
constructor, the prototype of which is shown here:

BScrollBar(BRect frame,
 const char *name,
 BView *target,
 float min,
 float max,
 orientation posture)

The first parameter, frame, is a rectangle that defines the boundaries of the scroll-
bar. The coordinates of the rectangle are relative to the scrollbar’s parent view, not
to the thing that is to be scrolled. User interface guidelines state that scrollbars
should be of a uniform thickness. That is, all horizontal scrollbars should be of the
same height, and all vertical scrollbars should be of the same width. Use the Be-
defined constants B_H_SCROLL_BAR_HEIGHT and B_V_SCROLL_BAR_WIDTH to
ensure that your program’s scrollbars have the same look as those used in other
Be applications. For instance, to set up the rectangle that defines a horizontal
scrollbar to run along the bottom of a text object, you might use this code:

BRect horizScrollFrame(20.0, 50.0, 220.0, 50.0 + B_H_SCROLL_BAR_HEIGHT);

The second parameter serves the same purpose as the name parameter in other
BView-derived classes: it allows the view to be accessed by name using the BView
function FindView().

A scrollbar acts on a target—a view associated with the scrollbar. The target is
what gets scrolled, and is typically an object that holds text or graphics. To bind a
scrollbar to the object to be scrolled, follow these steps:

1. Create the target object.

2. Add the target object to a view (its parent view).

3. Create a scrollbar object, using the target object as the target parameter in
the BScrollBar constructor.

4. Add the scrollbar object to the view that serves as the target object’s parent.

For a target that displays graphics, the min and max parameters determine how
much of the target view is displayable. The values you use for these two parame-
ters will be dependent on the total size of the target. If the target view is a
BTextView object, the values assigned to min and max are inconsequential—the
scrollbar is always aware of how much text is currently in the target view and
adjusts itself accordingly. The exception is if both min and max are set to 0. In
such a case, the scrollbar is disabled and no knob is drawn, regardless of the tar-
get view’s contents. Refer to the “Scrollbar range” section just ahead for more

308 Chapter 8: Text

details on choosing values for these two parameters when the target consists of
graphics.

The last parameter, posture, designates the orientation of the scrollbar. To create
a horizontal scrollbar, pass the Be-defined constant B_HORIZONTAL. For a vertical
scrollbar, pass B_VERTICAL.

The following snippet provides an example of a call to the BScrollBar construc-
tor. Here a horizontal scrollbar is being created for use with a previously created
BTextView object named theTextView. Because the target is a text object, the
values of min and max are arbitrarily selected:

BScrollBar *horizScrollBar;
BRect horizScrollFrame(20.0, 50.0, 220.0,
 50.0 + B_H_SCROLL_BAR_HEIGHT);
float min = 1.0;
float max = 1.0;

horizScrollBar = new BScrollBar(scrollFrame, "ScrollBar", theTextView,
 min, max, B_HORIZONTAL);

Scrollbar example project

This chapter’s TextView example project demonstrated how a window can sup-
port editable text through the use of a BTextView object. Because the topic of
scrollbars hadn’t been presented when TextView was developed, the program’s
text view didn’t include them. Now you’re ready to add a vertical scrollbar, a hori-
zontal scrollbar, or both to a text view. As shown in Figure 8-12, for the Text-
ViewScrollBar project I’ve elected to add just a vertical scrollbar to the window’s
BTextView object.

The TextView example project shows how to set up viewFrame and textBounds,
the rectangles that define the boundary of the window’s BTextView object and
the area that displays text in that object. Here I’ll discuss only the code that’s been
added to the TextView project to turn it into the TextViewScrollBar project. All

Figure 8-12. The TextViewScrollBar example program’s window

Scrolling 309

those additions appear in the MyDrawView constructor. The new code involves the
creation of a vertical scrollbar, and appears following the call to InsetBy():

BRect viewFrame(20.0, 20.0, 220.0, 80.0);

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect textBounds;

 textBounds.left = TEXT_INSET;
 textBounds.right = viewFrame.right - viewFrame.left - TEXT_INSET;
 textBounds.top = TEXT_INSET;
 textBounds.bottom = viewFrame.bottom - viewFrame.top - TEXT_INSET;

 fTextView = new BTextView(viewFrame, "MyTextView", textBounds,
 B_FOLLOW_NONE, B_WILL_DRAW);
 AddChild(fTextView);

 viewFrame.InsetBy(-2.0, -2.0);

 BScrollBar *verticalBar;
 BRect scrollFrame;
 float min = 1.0;
 float max = 1.0;

 scrollFrame = viewFrame;
 scrollFrame.left = scrollFrame.right;
 scrollFrame.right = scrollFrame.left + B_V_SCROLL_BAR_WIDTH;

 verticalBar = new BScrollBar(scrollFrame, "VerticalBar", fTextView,
 min, max, B_VERTICAL);
 AddChild(verticalBar);
 verticalBar->SetResizingMode(B_FOLLOW_NONE);
}

The scrollbar will be added to the target’s parent view (MyDrawView), so the coor-
dinates of the scrollbar’s rectangle are relative to the parent view, not to the target
view. The scrollFrame rectangle coordinates are first set to those of the target
view. That gives the scrollbar the same top and bottom coordinates as the target,
as desired. Then the scrollbar’s left and right side coordinates are adjusted so that
the scrollbar lies flush on the right side of the target view. The scrollFrame rect-
angle is then used as the first parameter to the BScrollBar constructor. The pre-
viously created BTextView object fTextView is specified as the scrollbar’s target.
The scrollbar is then added to MyDrawView, just as the target was previously
added.

310 Chapter 8: Text

Graphical user interface conventions dictate that a vertical scrollbar
be located flush against the right side of the area that is scrollable,
and that a horizontal scrollbar be located flush against the bottom of
the area that’s scrollable. But nothing in the BScrollBar class forces
you to follow that convention. A scrollbar is associated with a view
to scroll by naming the view as the target in the BScrollBar con-
structor. Depending on the coordinates you choose for the frame
rectangle parameter of the BScrollBar constructor, the scrollbar
can be placed anywhere in the parent view and it will still scroll the
contents of the target view.

Notice that in this example the resizing mode of the scrollbar is adjusted. The
BScrollBar constructor doesn’t include a sizing mode parameter. Instead, the
specification of the scrolling bar’s orientation (the last parameter to the
BScrollBar constructor) defines a default behavior for the scrollbar. A vertically
oriented scrollbar (like the one created here) resizes itself vertically. As the parent
view changes in size vertically, the vertical scrollbar will grow or shrink vertically.
As the parent view changes in size horizontally, the vertical scrollbar will follow
the parent view.

In many cases these default characteristics are appropriate. In this project, they
aren’t. I’ve given the BTextView object a resizing mode of B_FOLLOW_NONE, indi-
cating that the text view object will remain a fixed size as the parent view changes
size. In such a case, I want the target view’s scrollbar also to remain fixed in size
and location. A call to the BView function SetResizingMode() takes care of that
task.

Scrollbar range

If a scrollbar’s target is a view that holds a graphical entity, such as a BView object
that includes a BPicture object, the BScrollBar constructor min and max param-
eters take on significance. Together, min and max define a range that determines
how much of the target view is displayable. Consider a view that is 250 pixels in
width and 200 pixels in height, and is to be displayed in a view that is 100 pixels
by 100 pixels in size. If this 100-by-100 pixel view has two scrollbars, and it’s
desired that the user be able to scroll the entire view, the range of the horizontal
scrollbar should be 150 and the range of the vertical scrollbar should be 100.
Figure 8-13 illustrates this.

In Figure 8-13, 100 pixels of the 250-pixel width of the view will always be dis-
played, so the horizontal range needs to be only 150 in order to allow the hori-
zontal scrollbar to bring the remaining horizontal portions of the view through the
display area. Similarly, 100 of the 200 vertical pixels will always be displayed in

Scrolling 311

the view, so the vertical range needs to be 100 in order to pass the remaining 100
pixels through the display area. Assuming a graphics-holding view named
theGraphicView, derived from a BView object, exists (as shown in Figure 8-13),
the two scrollbars could be set up as shown in the following snippet. To see the
relationship of the coordinates of the scrollbars to the view, refer to Figure 8-14.

BScrollBar *horizScrollBar;
BRect horizScrollFrame(170.0, 300.0, 270.0,
 300.0 + B_H_SCROLL_BAR_HEIGHT);
float horizMin = 0.0;
float horizMax = 150.0;
BScrollBar *vertScrollBar;
BRect vertScrollFrame(270.0, 200.0, 270.0 + B_V_SCROLL_BAR_WIDTH,
 300.0);
float vertMin = 0.0;
float vertMax = 100.0;

horizScrollBar = new BScrollBar(horizScrollFrame, "HScrollBar",
 theGraphicView,
 horizMin, horizMax, B_HORIZONTAL);
vertScrollBar = new BScrollBar(vertScrollFrame, "VScrollBar",
 theGraphicView,
 vertMin, vertMax, B_VERTICAL);

If the target view changes size during program execution (for instance, your pro-
gram may allow the user to replace the currently displayed contents of the view
with different graphic), the range of any associated scrollbar should change, too.
The BScrollBar function SetRange() exists for this purpose:

void SetRange(float min,
 float max)

The example just discussed has a horizontal scrollbar with a range of 0 to 150 pix-
els. If for some reason I wanted to allow the user to be able to scroll beyond the

Figure 8-13. An example of determining the range of a pair of scrollbars

150

250

100

200

312 Chapter 8: Text

right edge of the view, I could increase the scrollbar’s maximum value. Here I
change the scrollbar’s range to allow the user to view 50 pixels of white space
past the view’s right edge:

horizScrollBar->SetRange(0.0, 200.0);

The companion function to SetRange() is GetRange(). As expected, this func-
tion returns the current minimum and maximum scrolling values of a scrollbar:

void GetRange(float *min,
 float *max)

If this next snippet is executed after the preceding call to SetRange(), min should
have a value of 0.0 and max should have a value of 200.0:

float min;
float max;

horizScrollBar->GetRange(&min, &max);

The ScrollViewPicture example near the end of this chapter provides an example
of setting the scrollbar range for a BView object that’s used as the target for a
BScrollView object—a view that has built-in scrollbars.

Scrolling View

It’s a relatively easy assignment to add scrollbars to a view, as just demonstrated in
the TextViewScrollBar project. However, the BeOS API makes it easier still. The
BScrollView class creates a scroll view object that serves as a container for
another view. This contained view can hold either text (as a BTextView does) or
graphics (as a BPicture does). Regardless of the content of its contained view,

Figure 8-14. The coordinates of a pair of scrollbars and the picture to be scrolled

(20.0, 300.0) (170.0, 300.0) (270.0, 300.0)

(270.0, 200.0)

(270.0, 100.0)(20.0, 100.0)

Scrolling 313

the BScrollView object is responsible for adding scrollbars that allow for scroll-
ing through the entire content and for making itself the parent of the contained
view.

The BScrollView class

The seven parameters of the BScrollView constructor make it possible to create a
scrolling view object that has one, two, or even no scrollbars:

BScrollView(const char *name,
 BView *target,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = 0,
 bool horizontal = false,
 bool vertical = false,
 border_style border = B_FANCY_BORDER)

The name, resizingMode, and flags parameters serve the purposes expected of
a BView-derived class. The name parameter allows the scroll view object to be
accessed by its name. The resizingMode specifies how the object is to be resized
as the parent view changes size: the default value of B_FOLLOW_LEFT |
B_FOLLOW_TOP indicates that the distance from the scroll view’s left side and its
parent’s left side will be fixed, as will the distance from the scroll view’s top and
its parent’s top. The flags parameter specifies the notification the scroll view
object is to receive. The default value of 0 means that the object isn’t to receive
any notification.

The target parameter specifies the previously created view object to be sur-
rounded by the scroll view object. The contents of the target view are what is to
be scrolled. There’s no need to specify any size for the new scroll view object. It
will automatically be given a framing rectangle that accommodates the target view,
any scrollbars that may be a part of the scroll view object, and a border (if
present).

A scroll view object can have a horizontal scrollbar, a vertical scrollbar, both, or
neither. The horizontal and vertical parameters specify which scrollbar or
bars should be a part of the scroll view object. By default, the object includes no
scrollbars (meaning the object serves as nothing more than a way to draw a bor-
der around a different view, as discussed in the border parameter description
next). To include a scrollbar, simply set the appropriate horizontal or vertical
parameter to true.

The border parameter specifies the type of border to surround the scroll view
object. By default, a scroll view object has a fancy border; the appearance of a
groove surrounds the object. To specify a plain line border, pass the Be-defined

314 Chapter 8: Text

constant B_PLAIN_BORDER as the last argument to the BScrollView constructor.
To omit the border completely, pass B_NO_BORDER instead.

In this next snippet, a scroll view object is created with a plain border and a verti-
cal scrollbar. Here it’s assumed that theTextView is a BTextView object that isn’t
resizable. Because the target is fixed in the window in which it resides, the scroll
view too can be fixed. As evidenced by the value of the resizingMode parame-
ter (B_FOLLOW_NONE), theScrollView won’t be resizeable:

BScrollView *theScrollView;

theScrollView = new BScrollView("MyScrollView", theTextView, B_FOLLOW_NONE,
 0, false, true, B_PLAIN_BORDER);

Scroll view example project

This chapter’s TextViewScrollBar project modified the TextView example project to
demonstrate how a BScrollBar object can be used to scroll the contents of a
BTextView object. This latest project, ScrollViewText, achieves the same effect.
Here, however, a BScrollView object is used to create the BTextView object’s
scrollbar. The resulting window looks similar to the one generated by the Text-
ViewScrollBar project (refer back to Figure 8-12). Thanks to the BScrollView,
however, here the border around the text view object has shading, as shown in
Figure 8-15.

While the results of the TextViewScrollBar and ScrollView Text projects are simi-
lar, the effort expended to obtain the results differs. Using a BScrollView object
to supply the scrollbar (as done here) rather than using a BScrollBar object
means there’s no need to supply the scrollbar’s coordinates. The BScrollView
object takes care of the scrollbar’s placement based on the location of the desig-
nated target. Additionally, there’s no need to draw a border around the text view;
the BScrollBar object takes care of that task too.

The MyDrawView class declaration is the same as it was for the original TextView
project, with the addition of a BScrollView object:

Figure 8-15. The ScrollViewText example program’s window

Scrolling 315

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);

 private:
 BTextView *fTextView;
 BScrollView *fScrollView;
};

The MyDrawView constructor holds the scroll view code:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect viewFrame(20.0, 20.0, 220.0, 80.0);
 BRect textBounds;

 textBounds.left = TEXT_INSET;
 textBounds.right = viewFrame.right - viewFrame.left - TEXT_INSET;
 textBounds.top = TEXT_INSET;
 textBounds.bottom = viewFrame.bottom - viewFrame.top - TEXT_INSET;

 fTextView = new BTextView(viewFrame, "MyTextView", textBounds,
 B_FOLLOW_NONE, B_WILL_DRAW);
 fScrollView = new BScrollView("MyScrollView", fTextView, B_FOLLOW_NONE,
 0, false, true);
 AddChild(fScrollView);
}

The MyDrawView constructor begins by setting up and creating a BTextView
object. This code is the same as the code that appears in the TextView version of
the MyDrawView constructor, with one exception. Here, a call to AddChild()
doesn’t immediately follow the creation of the text view object. The newly created
BTextView object isn’t added to the drawing view because it is instead added to
the BScrollView object when it is passed to the scroll view’s constructor. The
BScrollView object is then added to the drawing view. When the program cre-
ates a window, that window’s view hierarchy will look like the one pictured in
Figure 8-16. In this figure, you see that the BScrollView object fScrollView is
the parent to two views: the target view fMyTextView and a BScrollBar object
created by the BScrollView constructor. Later, in the ScrollViewPicture project,
you’ll see how your code can easily access this implicitly created scrollbar.

The implementation of this project’s AttachedToWindow() function is identical to
the TextView projects: call SetFont() and SetFontSize() to specify font infor-
mation for the drawing view, then call fTextView->MakeFocus() to start the cur-
sor blinking in the BTextView object. The implementation of Draw() is simple—
here it’s an empty function. In the TextView project, StrokeRect() was invoked

316 Chapter 8: Text

to draw a border around the BTextView object. Here, I rely on the BScrollView
object’s ability to automatically draw its own border.

void MyDrawView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(12);

 fTextView->MakeFocus();
}

void MyDrawView::Draw(BRect)
{
}

Scrolling window example project

If your program offers the user text editing capabilities, it may make sense to pro-
vide a window that exists for just that purpose. Typically, a simple text editor dis-
plays a resizable window bordered by a vertical scrollbar and possibly a horizon-
tal scrollbar. Figure 8-17 shows such a window—the window displayed by the
ScrollViewWindow project.

Figure 8-16. View hierarchy of the window of the ScrollViewText program

BWindow
object

MessageReceived()

BLooper

B_MOUSE_DOWN

BHandler

Application
server

BWindow
object

DispatchMessage()
B_MOUSE_DOWN

Scrolling 317

The ScrollViewWindow project includes only slight modifications to the Text-
ViewScrollBar project. All the changes are found in the MyDrawView constructor:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect viewFrame;
 BRect textBounds;

 viewFrame = Bounds();
 viewFrame.right -= B_V_SCROLL_BAR_WIDTH;

 textBounds.left = TEXT_INSET;
 textBounds.right = viewFrame.right - viewFrame.left - TEXT_INSET;
 textBounds.top = TEXT_INSET;
 textBounds.bottom = viewFrame.bottom - viewFrame.top - TEXT_INSET;

 fTextView = new BTextView(viewFrame, "MyTextView", textBounds,
 B_FOLLOW_ALL, B_WILL_DRAW);

 fScrollView = new BScrollView("MyScrollView", fTextView,
 B_FOLLOW_ALL, 0, false, true);
 AddChild(fScrollView);
}

A call to the BView function Bounds() sets the coordinates of what is to be the
BScrollView target, the BTextView view object, to the coordinates of the draw-
ing view. The drawing view itself is the same size as the content area of the win-
dow it resides in, so this brings me close to my goal of making the entire content
area of the window capable of holding user-entered text. The exception is that
room needs to be allowed for the vertical scrollbar. Subtracting the width of this
scrollbar results in a viewFrame rectangle with the desired size.

The other changes to the MyDrawView constructor involve the resizingMode
parameter to both the BTextView constructor and the BScrollView constructor.
In the previous example, the scroll view was fixed in size, so neither the scroll
view nor its target needed to be concerned with resizing. Here I want the text area
of the window to always occupy the entire content area of the window, less
the window’s scrollbar area. A resizingMode of B_FOLLOW_ALL (rather than

Figure 8-17. The ScrollViewWindow example program’s window

318 Chapter 8: Text

B_FOLLOW_NONE) tells both the BScrollView object and its BTextView target that
they should automatically resize themselves as the user changes the parent win-
dow’s size.

Accessing a BScrollView scrollbar

The BScrollView constructor lets you specify whether a BScrollView object
should include a horizontal scrollbar, a vertical scrollbar, or both. The constructor
is responsible for creating the appropriate number of BScrollBar objects and
placing them within the BScrollView object. The BScrollView constructor gives
each of its BScrollBar objects a default range of 0.0 to 1000.0. If the
BScrollView object’s target is a BTextView, these default minimum and maxi-
mum values always suffice—the BTextView object makes sure that the ranges of
the scrollbars that target it are adjusted accordingly. If the BScrollView object’s
target is instead a view that holds graphics, you’ll need to adjust the range of each
scrollbar so that the user is guaranteed visual access to the entire target view.

This chapter’s “Scrollbar range” section describes how to determine the range for a
scrollbar to scroll graphics, as well as how to use the BScrollBar function
SetRange() to set a scrollbar’s minimum and maximum values. After determining
the range a scroll view object’s scrollbar should have, invoke the BScrollView
function ScrollBar() to gain access to the scrollbar in question. Pass
ScrollBar() the type of scrollbar (B_HORIZONTAL or B_VERTICAL) to access,
and the routine returns the BScrollBar object. Then invoke that object’s
SetRange() function to reset its range. Here, access to the vertical scrollbar of a
BScrollView object named theScrollView is gained, and the scrollbar’s range is
then set to a minimum of 0.0 and a maximum of 340.0:

BScrollBar *scrollBar;

scrollBar = theScrollView->ScrollBar(B_VERTICAL);
scrollBar->SetRange(0.0, 340.0);

Scrollbar access example project

While topics such as the BStringView class and the BTextView class have made
the display of text the focus of this chapter, I’ll close with an example that demon-
strates how to scroll a picture. The BScrollView class (covered later in this sec-
tion) places no restrictions on what type of view is to be the designated target, so
the differences between scrolling text and scrolling graphics are minimal. As
shown in Figure 8-18, the ScrollViewPicture project demonstrates how to use a
BPicture object as the target of a BScrollView object.

This example would work just fine with a very simple picture, such as one cre-
ated by drawing a single large rectangle. I’ve opted to instead create a slightly
more complex picture, and at the same time set up the project such that it’s an

Scrolling 319

easy task to make the picture far more complex. I’ve done that by creating a
BView-derived class named MyPictureView. The declaration of this new class
appears in the MyPictureView.h header file, while the implementations of the class
member functions can be found in MyPictureView.cpp. Here’s the MyPictureView
declaration:

class MyPictureView : public BView {

 public:
 MyPictureView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);

 private:
 BPicture *fPicture;
};

As you’ll see in this example, a MyPictureView object will become the target of a
BScrollView object. That means the MyPictureView class could include any
number of graphics, and the scroll view object will view them all as a single entity.
So while I’ve included a single BPicture data member in the MyPictureView,
your BView-derived class could hold two, three, or three hundred pictures, along
with other graphic data members such as polygons or bitmaps (see Chapter 5 for
shape-drawing information and Chapter 10, Files, for bitmap details).

The AttachedToWindow() routine sets up the picture. Recall that such code can’t
appear in the constructor of the picture’s parent view. That’s because the
BPicture definition relies on the current state of the picture’s parent view, and
the parent view’s state isn’t completely set up until the execution of
AttachedToWindow().

void MyPictureView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(12);

Figure 8-18. The ScrollViewPicture example program’s window

320 Chapter 8: Text

 BeginPicture(new BPicture);
 BRect aRect;
 int32 i;

 for (i=0; i<100; i++) {
 aRect.Set(i*2, i*2, i*3, i*3);
 StrokeRect(aRect);
 }
 fPicture = EndPicture();
}

I mentioned earlier that your own BView class could contain more
than one BPicture data member. Looking at the above version of
AttachedToWindow(), you might think that’s unnecessary because
you can define a single BPicture object to include all the graphics
a view needs. That may be the case—or it may not be. Your pro-
gram might construct a BView-derived class by piecing together mul-
tiple BPicture objects. For instance, your application may give the
user the opportunity to define a single large graphic by selecting
numerous small pictures.

The BScrollView object will exist in a MyDrawView object, and will have a
BScrollView object as its target. I’ve included MyPictureView and
BScrollView data members in the MyDrawView class to keep track of these
objects.

class MyDrawView : public BView {

 public:
 MyDrawView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);

 private:
 MyPictureView *fPictureView;
 BScrollView *fScrollView;
};

The MyDrawView constructor begins by creating what will be the target view:
fPictureView. Next, it creates a BScrollView object with fPictureView as the
target. After adding the scroll view to the drawing view, the default ranges of the
scroll view’s two scrollbars are altered. Looking back at the MyPictureView ver-
sion of AttachedToWindow(), you’ll note that the BPicture object will be 300
pixels wide and 300 pixels high. Yet the width and height of the viewFrame rect-
angle that is to display this picture are each only 100 pixels. The difference in the
actual size of the picture and the size of the rectangle the picture’s displayed in is
used in resetting the scrollbar ranges:

Scrolling 321

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
 BRect viewFrame(20.0, 20.0, 120.0, 120.0);

 fPictureView = new MyPictureView(viewFrame, "MyPictureView");

 fScrollView = new BScrollView("MyScrollView", fPictureView,
 B_FOLLOW_NONE, 0, true, true);
 AddChild(fScrollView);

 BScrollBar *scrollBar;

 scrollBar = fScrollView->ScrollBar(B_VERTICAL);
 scrollBar->SetRange(0.0, 200.0);
 scrollBar = fScrollView->ScrollBar(B_HORIZONTAL);

scrollBar->SetRange(0.0, 200.0);
}

322

Chapter 9

In this chapter:
• The Application Kit

and Messages
• Application-Defined

Messages9
Messages and Threads 9.

Several years ago Be, Inc. set out to develop a new operating system—one they
eventually dubbed the Media OS. The goal was to create an operating system that
could keep up with the computationally intensive demands of media profession-
als who routinely worked with complex and resource-hungry graphics and audio
files. From the start, Be knew that threads and messages would be of paramount
importance. A multithreaded environment means that a single application can
simultaneously carry out multiple tasks. On a single-processor machine, CPU idle
time is reduced as the processor services one thread followed by another. On a
multiprocessor machine, task time really improves as different CPUs can be dedi-
cated to the servicing of different threads.

Threads can be considered roadways that allow the system to communicate with
an object, one object to communicate with another object, and even one applica-
tion to communicate with another application. Continuing with the analogy, mes-
sages are the vehicles that carry the information, or data, that is to be passed from
one entity to another. Chapter 4, Windows, Views, and Messages, introduced mes-
sages, and seldom since then have a couple of pages passed without a direct or
indirect reference to messages. In this chapter, I’ll formally explain of how mes-
sages and threads work. In doing so, you’ll see how your application can create its
own messages and use them to let one object tell another object what to do. You'll
see how sending a message can trigger an object to perform some desired action.
You’ll also see how a message can be filled with any manner of data before it’s
sent. Once received, the recipient object has access to any and all of the data held
within the message.

The Application Kit and Messages 323

The Application Kit and Messages
Servers are background processes that exist to serve the basic, low-level needs of
applications. The BeOS end user makes indirect use of servers every time he or
she runs a Be application. As a Be programmer, you make more direct use of serv-
ers by using the BeOS application programming interface. The classes of the API
are organized into the software kits that have been discussed at length throughout
this book. The most basic, and perhaps most important, of these kits is the Appli-
cation Kit. Among the classes defined in this kit is the BApplication class. Your
application begins by creating a BApplication object. When an instance of that
class is created, your application connects to the Application Server, and can make
use of all the services provided by that server. Tasks handled by the Application
Server include the provision of windows, the handling of the interaction between
these windows, and the monitoring and reporting of user events such as mouse
button clicks. In short, the Application Server, and indirectly the classes of the
Application Kit, allow the system to communicate with an application. This com-
munication takes place via messages that travel by way of threads.

The classes of the Application Kit (shown in Figure 9-1) fall into the four catego-
ries listed below. Of these groupings, it’s messaging that’s the focus of this chapter.

Messaging
The Application Server delivers system messages to an application. Addition-
ally, an application can send application-defined messages to itself (the pur-
pose being to pass information from one object to another). The Application
Kit defines a number of message-related classes that are used to create,
deliver, and handle these messages. Among these classes are: BMessage,
BLooper, and BHandler.

BApplication class
An application’s single BApplication object is the program’s interface to the
Application Server.

BRoster class
The system keeps a roster, or list, of all executing applications. Upon the
launch of your application, a BRoster object is automatically created. In the
event that your program needs to communicate with other running applica-
tions, it can do so by accessing this BRoster object.

BClipboard class
The system keeps a single clipboard as a repository for information that can
be shared—via copying, cutting, and pasting—between objects in an applica-
tion and between distinct applications. Upon launch, your application auto-
matically creates a BClipboard object that is used to access the systemwide
clipboard.

324 Chapter 9: Messages and Threads

Messaging

The Application Kit defines the classes that allow an application to be multi-
threaded. While threads run independently, they do need a means of communicat-
ing with one another. So the Application Kit also defines classes that allow for the
creation and delivery of messages.

The BMessage class is used to create message objects. A single message can con-
tain as little or as much information as appropriate for its purpose. Once created
within one thread, a message can be delivered to the same thread, a different
thread in the same application, or to a thread in a different application altogether.

How a thread obtains a message and then handles that message is determined by
the Application Kit classes BLooper and BHandler. A BLooper object runs a mes-
sage loop in a thread. This message loop receives messages and dispatches each
to a BHandler object. The handler object is responsible for handling the message
as appropriate for the message type. Notice in Figure 9-1 that the BLooper class is
derived from the BHandler class. This means that a looper object is also a han-
dler object, and can thus pass a message to itself. While this may sound self-
defeating, it actually serves as a quite useful mechanism for initiating and carrying
out a task from within one object, such as a window (which, as shown in
Figure 9-1, is both a looper and a handler). Throughout this chapter you’ll see sev-
eral examples of the creating of messages and the dispatching of these messages
both by the object that created them and by other objects.

Figure 9-1. The inheritance hierarchy for the Application Kit

Application Kit

Other Be Kit

BRoster

BRoster

BObjects
Support Kit

BHandler

BMessage

BMessenger

BMessageFiller

BMessageQueue

BWindow
Interface Kit

BLooper BApplication

The Application Kit and Messages 325

Because an application is multithreaded, more than one thread may attempt to
access the same data. For read-only data (data that can’t be written to or altered),
that’s not a problem. For read-write data, a problem could exist; if both accessing
objects try to alter the same data at the same time, the result will be at best unpre-
dictable and at worst disastrous. To prevent simultaneous data access, the BeOS
allows for the locking of data. When one thread is about to access data, it can first
lock it. While locked, other threads are prevented access. When a thread encoun-
ters locked data, it finds itself waiting in queue. Only after the thread that locked
the data later unlocks it will other threads get a chance at access.

In many instances, the locking and unlocking of data is handled by the system.
For instance, when a window receives a message (when a message enters the win-
dow thread's message loop), the BWindow object is locked until the message is
handled. From Chapter 4 you know that a window object has a host of characteris-
tics, such as size, that can be altered at runtime. If the window wasn’t locked dur-
ing message handling, and the message indicated that, say, the window should be
resized, the possibility exists for a second such message to arrive at the same time
and also attempt to change the values of the window object’s screen coordinates.

Occasionally there’ll be cases where your application is responsible for the lock-
ing and unlocking of data. For such occasions, the object to be locked will have
Lock() and Unlock() member functions in its class definition. This chapter pro-
vides one such instance of manually locking and unlocking an object. If your pro-
gram wants to add data to the clipboard (as opposed to the user placing it there
by a copy or cut), it should first lock the clipboard (in case the user does in fact
perform a copy or cut while your program is in the process of placing data on the
clipboard!). This chapter’s ClipboardMessage project shows how this is done.

Application Kit Classes

The previous section described the Application Kit classes directly involved with
messages—the BMessage, BLooper, and BHandler classes. Other Application Kit
classes, while not as important in terms of messaging, are still noteworthy. Be sug-
gests that the collective message-related classes make up one of four Application
Kit categories. The other three each contain a single class—BApplication,
BRoster, and BClipboard class. Those three classes are discussed next.

BApplication class

By now you’re quite familiar with the notion that every program must create a sin-
gle instance of the BApplication class (or of an application-defined
BApplication-derived class). The BApplication class is derived from the
BLooper class, so an object of this class type runs its own message loop. A pro-
gram’s application object is connected to the Application Server, and system

326 Chapter 9: Messages and Threads

messages sent to the program enter the application object’s message loop. If a
message is a system message (such as a B_QUIT_REQUESTED), it is eventually han-
dled by a BApplication hook function (such as QuitRequested()). The
BApplication class defines a MessageReceived() function that augments the
BHandler version of this routine. If your program wants the application object to
handle application-defined messages, it should override and augment the
BApplication version MessageReceived(). To do that, your program defines a
message constant, declares MessageReceived() in the BApplication-derived
class declaration, and implements MessageReceived():

#define MY_APP_DEFINED_MSG 'mymg'

class MyAppClass : public BApplication {

 public:
 MyAppClass();
 virtual void MessageReceived(BMessage* message);
};

void MyAppClass::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case MY_APP_DEFINED_MSG:
 // handle this type of message
 break;

 default:
 inherited::MessageReceived(message);
 break;
 }
}

Previous example projects haven’t made direct use of MessageReceived() in the
application object. This chapter’s AlertMessage project (discussed in the “Message-
posting example project” section) provides a specific example.

Like the BApplication class, the BWindow class is derived from
BLooper. So, like an application object, a window object runs a
message loop. And, again like an application object, a window
object has a connection to the Application Server—so a window can
be the recipient of system messages. Examples of these interface sys-
tem messages include B_QUIT_REQUESTED, B_ZOOM, B_MOUSE_DOWN,
B_KEY_DOWN, and B_WINDOW_RESIZED messages.

The Application Kit and Messages 327

BRoster class

The system, of course, keeps track of all running applications. Some of the infor-
mation about these processes is stored in a roster, or table, in memory. Much of
this information about other executing applications is available to your executing
application. Your program won’t access this roster directly, though. Instead, it will
rely on the be_roster global variable. When an application launches, an object of
the BRoster class is automatically created and assigned to be_roster.

To garner information about or communicate via messages with another applica-
tion, you simply refer to be_roster and invoke one of the BRoster member
functions. Some of the important BRoster functions and their purposes include:

GetAppList()
Returns an identifier for each running application.

GetAppInfo()
Provides information about a specified application.

ActivateApp()
Activates an already running application by bringing one of its windows to the
front and activating it.

Broadcast()
Broadcasts, or sends, a message to all currently running applications.

IsRunning()
Determines if a specified application is currently running.

Launch()
Locates an application on disk and launches it.

FindApp()
Locates an application (as Launch() does), but doesn’t launch it.

One of the ways be_roster identifies an application is by the program’s signa-
ture (presenting you with another reason to make sure your application’s signa-
ture is unique—as mentioned in Chapter 2, BeIDE Projects). The very simple Ros-
terCheck example project in this chapter takes advantage of this in order to see
how many instances of the RosterCheck program are currently running. Ros-
terCheck allows itself to be launched more than once, but not more than twice.

When creating an application that is to allow for multiple instances
of the program, you need make sure that the application flags field
resource is set to multiple launch. Chapter 2 discusses this resource
and how to set it. In short, you double-click on the project’s
resource file to open it, then click the Multiple Launch radio button
in the Application Flags section.

328 Chapter 9: Messages and Threads

The roster keeps track of each application that is running, including multiple
instances of the same application. To check the roster and make use of the results,
just a few lines of code in the application constructor are all that’s needed:

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-dps-twoapps")
{
 BList theList;
 long numApps;

 be_roster->GetAppList("application/x-dps-twoapps", &theList);
 numApps = theList.CountItems();

 if (numApps > 2) {
 PostMessage(B_QUIT_REQUESTED);
 return;
 }

 BRect aRect;

 aRect.Set(20, 30, 220, 130);
 fMyWindow = new MyHelloWindow(aRect);
}

When passed an application signature and a pointer to a BList object, the
BRoster function GetAppList() examines the roster and fills in the list object
with an item for each currently running application with the matching signature.
To know what to do next, you need at least a passing familiarity with the BList
class, a class not yet mentioned in this book.

The BList class is a part of the Support Kit, which defines datatypes, classes, and
utilities any application can use. An instance of the BList class is used to hold a
list of data pointers in an orderly fashion. Keeping data in a BList is handy
because you can then use existing BList member functions to further organize or
manipulate the data. The partial listing of the BList class hints at the things a list
can do:

class BList {

public:
 BList(int32 itemsPerBlock = 20);
 BList(const BList&);
 virtual ~BList();

 BList &operator=(const BList &from);
 bool AddItem(void *item);
 bool AddItem(void *item, int32 atIndex);
 bool AddList(BList *newItems);
 bool AddList(BList *newItems, int32 atIndex);
 bool RemoveItem(void *item);
 void *RemoveItem(int32 index);
 bool RemoveItems(int32 index, int32 count);

The Application Kit and Messages 329

 bool ReplaceItem(int32 index, void *newItem);
 void MakeEmpty();

 void SortItems(int (*cmp)(const void *, const void *));
 bool SwapItems(int32 indexA, int32 indexB);
 bool MoveItem(int32 fromIndex, int32 toIndex);

 void *ItemAt(int32) const;
 void *ItemAtFast(int32) const;
 void *FirstItem() const;
 void *LastItem() const;
 void *Items() const;

 bool HasItem(void *item) const;
 int32 IndexOf(void *item) const;
 int32 CountItems() const;
 bool IsEmpty() const;

 ...
}

The pointers that are stored in a list can reference any type of data, so the
BRoster function GetAppList() stores a reference to each running application
with the specified signature. After calling GetAppList() you can find out how
many instances of the application in question are currently running—just invoke
CountItems() to see how many items are in the list. That’s exactly what I do in
the RosterCheck project:

BList theList;
long numApps;

be_roster->GetAppList("application/x-dps-twoapps", &theList);
numApps = theList.CountItems();

After the above code executes, numApps holds the number of executing instances
of the RosterCheck program (including the instance that’s just been launched and
is executing the above code). The following code limits the number of times the
user can execute RosterCheck to two; if you try to launch RosterCheck a third
time, the program will immediately quit:

if (numApps > 2) {
 PostMessage(B_QUIT_REQUESTED);
 return;
}

A more well-behaved version of RosterCheck would post an alert explaining why
the program quit. It would also have some reason for limiting the number of
instances of the program—my arbitrary limit of two exists so that I can demon-
strate that the roster in general, and a BRoster member function in particular,
work!

330 Chapter 9: Messages and Threads

BClipboard class

The previous section described the system’s application roster, the be_roster glo-
bal object used to access the roster, and the BRoster class that defines the type of
object be_roster is. The clipboard works in a similar vein: there’s one system
clipboard, it’s accessed by a be_clipboard global object, and that object is of the
Be class BClipboard.

Objects of some class types make use of be_clipboard without any intervention
on your part. For instance, in Chapter 8, Text, you saw that a BTextView object
automatically supports the editing functions cut, copy, paste, and select all. When
the user cuts text from a BTextView object, the object places that text on the sys-
tem clipboard. Because this clipboard is global to the system, the cut data
becomes available to both the application from which the data was cut and any
other application that supports the pasting of data.

As you may suspect, when editing takes place in a BTextView object, messages
are involved. In particular, the BTextView object responds to B_CUT, B_COPY,
B_PASTE, and B_SELECT_ALL messages. The B_CUT and B_COPY messages add to
the clipboard the currently selected text in the text view object that's the focus
view. The B_PASTE message retrieves text from the clipboard and pastes it to the
insertion point in the text view object that's the focus view. If you want your pro-
gram to manually force other text to be added to the clipboard, or if you want
your program to manually retrieve the current text from the clipboard without
pasting it anywhere, you can do so by directly accessing the clipboard.

To fully appreciate how to work with the clipboard, you’ll want to read this chap-
ter’s “Working with BMessage Objects” section. In particular, the “Data, messages,
and the clipboard” subsection discusses messages as they pertain to the clipboard,
and the “Clipboard example project” subsection provides an example of adding
text directly to the clipboard without any intervention on the part of the user.

Application-Defined Messages
Up to this point, you’ve dealt mostly with system messages—messages generated
and dispatched by the system. The Message Protocols appendix of the Be Book
defines all the system messages. In short, system messages fall into the following
categories:

Application system messages
Such a message concerns the application itself, and is delivered to the
BApplication object. The application handles the message by way of a hook
function, as described in Chapter 4. B_QUIT_REQUESTED is one application
message with which you’re familiar.

Application-Defined Messages 331

Interface system messages
Such a message concerns a single window, and is delivered to a BWindow
object. The window handles the message by way of a hook function, or, if the
message affects a view in the window, passes it on to the BView object, which
handles it by way of a hook function. A B_WINDOW_ACTIVATED message is an
example of an interface message that would be handled by a window, while a
B_MOUSE_DOWN message is an example of an interface message that would be
passed on to a view (the view the cursor was over at the time of the mouse
button click) for handling.

Standard messages
Such a message is produced by either the system or application, but isn’t han-
dled by means of a hook function. The editing messages covered in
Chapter 8B_CUT, B_COPY, B_PASTE, and B_SELECT_ALLare examples of
standard messages. When a user selects text in a BTextView object and
presses Command-x, the affected window generates a B_CUT message that is
sent to the text view object. That object automatically handles the text cutting
by invoking the BTextView function Cut().

The system and standard messages are important to making things happen in your
application—they allow the user to interact with your program. But these mes-
sages are only a part of the powerful Be messaging system. Your application is
also free to define its own message constants, create messages of these applica-
tion-defined types, add data to these messages, and then pass the messages on to
other object or even other applications.

Message Handling

An application-defined message can be issued automatically in response to a user
action such as a menu item selection or a control activation. Your application can
also issue, or post, a message explicitly without any user intervention. Before
going into the details of application-defined messages, a quick review of system
messages will minimize confusion between how these different types of messages
are handled.

System message handling

When an application receives a system message, it is dispatched by sending the
message to the affected BHandler object. That object then invokes a hook func-
tion—a function specifically implemented to handle one particular type of system
message.

A system message is the result of an action external to the application. The mes-
sage is generated by the operating system, and is delivered to an application

332 Chapter 9: Messages and Threads

object or a window object. That object, or an object the message is subsequently
passed to, invokes the appropriate hook function.

As an example, consider a mouse button click. The click of a mouse button
inspires the Application Server to generate a B_MOUSE_DOWN message. The server
passes this message to the affected window (the window under the cursor at the
time of the mouse button click). A BWindow object is a looper, so the window has
its own thread that runs a message loop. From this loop, the message is dis-
patched to a handler, which in this example is the affected view (the view under
the cursor at the time of the mouse button click). A BView object is a handler, so it
can be the recipient of a passed message. A handler object in general, and a
BView-derived object in particular, has its own hook functions (either inherited
from the BView class or overridden). For a B_MOUSE_DOWN message, the pertinent
function the view invokes is the BView hook function MouseDown(). Figure 9-2
illustrates system message dispatching for this situation.

In Figure 9-2, you see that the window invokes a function named
DispatchMessage(). This is a BLooper function that BWindow augments (over-
rides in order to add window-specific functionality, and then invokes the inher-
ited version as well). DispatchMessage() is responsible for forwarding a system

Figure 9-2. A message moves from the Application Server to a view

BWindow
object

MessageReceived()

BLooper

B_MOUSE_DOWN

BHandler

Application
server

BWindow
object

DispatchMessage()
B_MOUSE_DOWN

Application-Defined Messages 333

message to the affected view. While your application can override
DispatchMessage(), it should seldom need to. Similarly, while
DispatchMessage() can be invoked directly, it’s best to leave the timing of the
call to the system. Leave it to the looper object (whether the application or a win-
dow) to automatically use this message-forwarding routine as it sees fit. In this
example, DispatchMessage() will make sure that the BView object’s version of
the hook function MouseDown() is invoked.

Chapter 4 provided a variety of examples that demonstrated system message han-
dling, including B_MOUSE_DOWN and B_KEY_DOWN messages. If you refer back to
any of these examples, you’ll see that each uses a hook function.

Application-defined message handling and implicitly generated messages

An application-defined message isn’t handled by means of a hook function. The
very fact that your application defines the message means that no pre-existing
hook function could be included in whatever BHandler-derived class the recipi-
ent object belongs to. Instead, an application-defined message is always dis-
patched by way of a call to MessageReceived(). The looper object that receives
the message passes it to a handler object, which uses its version of
MessageReceived() to carry out the message’s action. That leads to the distinc-
tion that a system message is usually handled by a hook function (some system-
generated messages, such as the standard messages resulting from text edits, need
to be handled by a version of MessageReceived()), while an application-defined
message is always handled by a MessageReceived() function.

You’ve seen several examples of how an application works with application-
defined messages—most notably in the chapters that deal with controls and menus
(Chapter 6, Controls and Messages, and Chapter 7, Menus). For instance, a pro-
gram that implements message handling through a menu item first defines a mes-
sage constant:

#define MENU_ADV_HELP_MSG 'help'

The program then includes this message constant in the creation of a new
BMessage object—as is done here as part of the process of creating a new
BMenuItem:

menu->AddItem(new BMenuItem("Advanced Help",
 new BMessage(MENU_ADV_HELP_MSG)));

Finally, the message constant appears in a case section in the BWindow object’s
MessageReceived() function—as in this snippet:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch (message->what) {

334 Chapter 9: Messages and Threads

 case MENU_ADV_HELP_MSG:
 OpenHelpWindow(MENU_ADV_HELP_MSG);
 break;

 // other case sections here

 default:
 BWindow::MessageReceived(message);
 }
}

Like a system message, an application-defined message relies on the BLooper-
inherited function DispatchMessage() to transfer the application-defined mes-
sage from the looper to the handler. Again, your code shouldn’t ever have to rede-
fine DispatchMessage() or invoke it directly. As shown in Figure 9-3, in this
example the BWindow object is both the looper and handler. The menu item–
generated message is placed in the window’s message loop, and the window
object sends the message to itself and invokes the window’s version of
MessageReceived() via the BWindow version of DispatchMessage().

While the window generates the message and delivers it to itself, the
Application Server may play a role in the act. This is most evident
for a message generated by a menu item or control. In each case,
the Application Server inserts when data into the message so the
application knows at what instant the event (generally a mouse but-
ton click) that initiated the message occurred.

Figure 9-3. A message moves from a window back to that window

BWindow
object

MessageReceived()

BLooper
BHandler

Application
server

DispatchMessage()
MENU_ADV_HELP_MSG

Application-Defined Messages 335

Application-defined message handling and explicitly generated messages

A user request, such as menu item selection or control activation, is one way an
application-defined message gets generated and MessageReceived() gets
invoked. In this case, the message is created and passed automatically. You may
encounter other instances where it’s appropriate for one object in a program to
receive information, or take some action, based on circumstances other than a user
action. To do that, your program can have an object (such as a window) create a
message object, and then have that message posted to a looper object.

As an example, consider a window that needs to pass some information to the
application. Perhaps the window is performing some lengthy task, and it wants the
application to know when the task is completed. The window could create a
BMessage object and send it to the application. In a simple case, the arrival of the
message might be enough information for the application. However, a message
can contain any amount of information, so a more sophisticated example might
have the message holding information about the completed task, such as the
length of time it took to execute the task.

When PostMessage() is called, the specified message is delivered to the looper
the function is called upon. You’ve seen this in all of the example projects to this
point. When the user clicks on a window’s close button, the window’s
QuitRequested() hook function is invoked. In that function, the application
object invokes PostMessage(). Here the application object acts as a looper to
post the message, then acts as a handler to dispatch the message to its
MessageReceived() function:

bool MyHelloWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);

 return(true);
}

A message posted to a looper via a call to PostMessage() gets delivered, or dis-
patched, via the DispatchMessage() function. When it comes time to send a
message, the sender (the looper object) calls PostMessage(). PostMessage() in
turn calls DispatchMessage(). In the above version of QuitRequested(), the
message posted is a Be-defined message, but that needn’t be the case—it could be
an application-defined one. In such a case, an object such as a window would cre-
ate the message using new and the BMessage constructor (as discussed ahead). If
the message was to be delivered to the application, the message could then be
posted just as it was in QuitRequested(). Figure 9-4 illustrates the process.

336 Chapter 9: Messages and Threads

Working with BMessage Objects

The preceding section served as an introduction to how an application might cre-
ate a message object and send it to another object. That section was just that—an
introduction. Here you’ll see the details—and code—for creating, posting, and
handling BMessage objects.

Creating a message

The BMessage constructor has a single parameter—a uint32 value represents the
new message object’s command constant. System message command constants
always begin with B_, as in B_QUIT_REQUESTED and B_MOUSE_DOWN, so to be
quickly recognized as an application-defined message, your application-defined
command constants should begin with any other combination of characters. Addi-
tionally, each system message’s command constant is defined to be a four-charac-
ter string that consists of only uppercase characters and, optionally, underscore
characters. Defining an application-defined message by any other scheme (such as
using all lowercase characters) ensures that the message won’t be misinterpreted
as a system message. Here’s an example of the creation of a BMessage object:

#define WAGER_MSG 'wger'

BMessage firstRaceWagerMsg = new BMessage(WAGER_MSG);

Figure 9-4. A message moves from a window to the application

BWindow
object

new BMessage()
MY_MESSAGE

BApplication
object

new BMessage()
MY_MESSAGE

BLooper

DispatchMessage()
MY_MESSAGE

BApplication
object

BHandler

MessageReceived()

Application-Defined Messages 337

The BMessage constructor sets the what data member of the new message object
to the value of the command parameter. As you’ve seen, it’s the value of what
that’s used by MessageReceived():

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case WAGER_MSG:
 // handle message;

 ...
 }
}

A message always has a command constant, and it may include data. Regardless of
whether a message holds data, it’s posted to a looper, and dispatched to a han-
dler, in the same way. The firstRaceWagerMsg consists of nothing more than a
command constant, but it is nonetheless a complete message. So before increas-
ing the complexity of message-related discussions by examining how data is
added to and extracted from a message object, let’s use the simple message to see
how a message is posted to a looper and then dispatched to a handler.

Posting and dispatching a message

Once created, a message needs to be placed in the message loop of a looper’s
thread and then delivered to a handler. The looper is an object of the BLooper
class or an object of a BLooper-derived class, such as the application object or a
window object. The handler is an object of the BHandler class or an object of a
BHandler-derived class, such as, again, the application object or a window object
(refer back to Figure 9-1 to see the pertinent part of the BeOS API class hierar-
chy). A call to PostMessage() places a message in the queue of the looper
whose PostMessage() function is called, and optionally specifies the handler to
which the message is to be delivered. This BLooper member function has the fol-
lowing parameter list:

status_t PostMessage(BMessage *message,
 BHandler *handler,
 BHandler *replyHandler = NULL)

The first parameter, message, is the BMessage object to post. The second parame-
ter, handler, names the target handler—the BHandler object to which the mes-
sage is to be delivered. The replyHandler, which is initialized to NULL, is of
interest only if the target handler object is going to reply to the message (more
typically the target handler simply handles the message and doesn’t return any
type of reply). While the poster of the message and the target of the message don’t
have to be one and the same, they can be—as shown in this snippet (read the

338 Chapter 9: Messages and Threads

“Menu Items and Message Dispatching” sidebar for a look at how previous exam-
ple projects have been doing this):

#define WAGER_MSG 'wger'

BMessage firstRaceWagerMsg = new BMessage(WAGER_MSG);

theWindow->PostMessage(firstRaceWagerMsg, theWindow);

A posted message is placed in the looper’s message queue, where it takes its place
behind (possibly) other messages in the queue in preparation to be delivered to
the target handler object. The looper object continually checks its queue and calls
the BLooper function DispatchMessage() for the next message in the queue.
When your posted message becomes the next in the queue, the looper invokes
DispatchMessage() to pass the message to the target handler. The effect is for
the posted message to reach the target handler’s MessageReceived() function. If
that routine has a case label that matches the message’s what data member, the
handler acts on the message. Since the above code names a window as both the
looper and the target handler, the window must have a MessageReceived()
function set up to take care of a message of type WAGER_MSG (if it doesn’t, the pro-
gram won’t fail—the posted message simply isn’t acted upon):

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case WAGER_MSG:
 // handle message;

 ...
 }
}

The BLooper class provides another way to call PostMessage()—a sort of short-
hand method that in many cases saves you the (admittedly simple) step of creat-
ing a BMessage object. Instead of passing a BMessage object as the first
PostMessage() parameter, simply pass the command constant that represents the
type of message to be posted. Here’s how a WAGER_MSG could be posted:

theWindow->PostMessage(WAGER_MSG, theWindow);

When a command constant is passed in place of a BMessage object, the
PostMessage() function takes it upon itself to do the work of creating the
BMessage object and initializing the new object’s what data member to the value
of the passed command constant. This method of invoking PostMessage() is
acceptable only when the message to be created contains no data (other than the
command constant itself). If a posted message object is to include additional data,
then PostMessage() won’t know how to add it to the newly created message

Application-Defined Messages 339

Menu Items and Message Dispatching
The code in this section shows that the poster of the message and the target of
the message can be the same object. You’ve already seen this situation several
times when working with menus, though the comparison may not be immedi-
ately noticeable. When a new menu item is created and added to a menu, a
new BMessage object is created and associated with the new menu item:

#define MENU_OPEN_MSG 'open'

BMenu *menu;
BMenuItem *menuItem;

menu = new BMenu("File");
menuItem = new BMenuItem("Open", new BMessage(MENU_OPEN_MSG));
menu->AddItem(menuItem);

When the user selects the Open menu item, the MENU_OPEN_MSG message is
sent to the message loop of the window that holds the menu item. No call to
PostMessage() is needed, as the system implicitly dispatches the message by
way of a call to DispatchMessage(). By default, the BMenuItem constructor
has made this same window the handler of this message, so the message typ-
ically gets dispatched to the MessageReceived() function of the window
(though it could end up going to a hook function if the menu item message
was a system message such as B_QUIT_REQUESTED):

void MyHelloWindow::MessageReceived(BMessage* message)
{

 switch(message->what)
 {
 case MENU_OPEN_MSG:
 // open a file;
 break;

 ...
 }
}

While the system takes care of menu handling without your code needing to
include an explicit call to PostMessage(), the effect is the same.

While the target handler for a menu item-associated message is the window
that holds the menu, you can change this default condition. A BMenuItem is
derived from the BInvoker class (a simple class that creates objects that can
be invoked to send a message to a target), so you can call the BInvoker func-
tion SetTarget() to make the change. After the following call, an Open menu
item selection will send a MENU_OPEN_MSG to the application’s version of
MessageReceived() rather than to the window’s version of this function:

menuItem->SetTarget(be_app);

340 Chapter 9: Messages and Threads

object. Working with more complex messages—messages that hold data—is the
subject of the next section.

Message-posting example project

The WindowMessage1 project demonstrates one way to stagger windows. Moving
windows about the screen is a trivial task that doesn’t necessarily require the use
of messages. That’s all the better reason to choose this chore for a message-related
example—it lets me concentrate on working with messages rather than on solving
a difficult problem!

A new WindowMessage1 window has a File menu that consists of a single item: a
New item that creates a new window. The program begins by opening a single
window near the upper-left corner of the screen. When the user chooses New
from the File menu, all open windows jump 30 pixels down and 30 pixels to the
right of their current locations. Thus, if a user chooses New a number of times
(without moving the windows as they’re created), the windows end up staggered
(as shown in Figure 9-5) rather than piled up like cards in a deck.

The WindowMessage1 project defines two application-defined message constants.
A message of type MENU_NEW_WINDOW_MSG is implicitly generated whenever the
user selects the New menu item. A message of type MOVE_WINDOWS_MSG is explic-
itly posted as a part of carrying out a New menu item selection:

#define MENU_NEW_WINDOW_MSG 'nwwd'
#define MOVE_WINDOWS_MSG 'anwd'

The MyHelloWindow constructor adds a menubar with the single menu to a new
window. The AddItem() function that adds the menu item is responsible for asso-
ciating a BMessage of type MENU_NEW_WINDOW_MSG with the menu item:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 frame.OffsetTo(B_ORIGIN);

Figure 9-5. The staggered windows of the WindowMessage1 program

Application-Defined Messages 341

 frame.top += MENU_BAR_HEIGHT + 1.0;

 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 BMenu *menu;
 BRect menuBarRect;

 menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
 fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
 AddChild(fMenuBar);

 menu = new BMenu("File");
 fMenuBar->AddItem(menu);
 menu->AddItem(new BMenuItem("New Window",
 new BMessage(MENU_NEW_WINDOW_MSG)));

 Show();
}

Each time the New menu item is selected, a copy of the menu item’s message is
created. A message object of this type consists of nothing more than the message
constant MENU_NEW_WINDOW_MSG. The new message object is sent to the mes-
sage’s handler. By default, this handler is the window the menu item appears in.
So it is the MessageReceived() function of the MyHelloWindow class that
becomes responsible for handling the message generated by a New menu item
selection:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case MENU_NEW_WINDOW_MSG:
 be_app->PostMessage(MOVE_WINDOWS_MSG, be_app);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

If I wanted the New menu item to simply create a new MyHelloWindow, I could
do that with just a few lines of code. But besides creating a new window, the han-
dling of this menu item choice might affect a number of existing windows. Keep-
ing track of the windows that are currently open is the responsibility of the
BApplication object, so I create a MOVE_WINDOWS_MSG and pass it to the appli-
cation as a means of signaling the application to offset each open window. Includ-
ing the message constant MOVE_WINDOWS_MSG in the call to PostMessage() tells
this routine to create a new message object and assign the message constant
MOVE_WINDOWS_MSG to the new message object’s what data member. Since my

342 Chapter 9: Messages and Threads

messages of type MOVE_WINDOWS_MSG won’t contain any additional data, this
message-creation shortcut is appropriate. The new message object is then posted
to the application object (per the second PostMessage() parameter).

The MyHelloApplication class is to handle application-defined messages, so the
class now needs to override MessageReceived(). Since the program allows mul-
tiple windows and doesn’t keep constant track of which window is active, the
MyHelloWindow data member fMyWindow that appears in similar examples has
been eliminated:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 virtual void MessageReceived(BMessage* message);
};

The MyHelloApplication version of MessageReceived() uses the Chapter 4
method of repeatedly calling the BApplication function WindowAt() to gain a
reference to each currently open window. Once found, a window is moved by
invoking the BWindow function MoveBy(). After all existing windows have been
moved, a new window is opened near the upper-left corner of the screen.

void MyHelloApplication::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case MOVE_WINDOWS_MSG:
 BWindow *oldWindow;
 int32 i = 0;

 while (oldWindow = WindowAt(i++)) {
 oldWindow->MoveBy(30.0, 30.0);
 }

 BRect theRect;
 MyHelloWindow *newWindow;

 theRect.Set(20.0, 30.0, 220.0, 130.0);
 newWindow = new MyHelloWindow(theRect);
 break;

 default:
 inherited::MessageReceived(message);
 break;
 }
}

The BApplication function WindowAt() returns a BWindow object—so that’s
what I’ve declared oldWindow to be. The only action I take with the returned win-
dow is to call the BWindow function MoveBy(). If I needed to perform some

Application-Defined Messages 343

MyHelloWindow-specific action on the window (for instance, if the
MyHelloWindow class defined a member function that needed to be invoked),
then I’d first need to typecast oldWindow to a MyHelloWindow object.

Adding and retrieving message data

A number of BMessage member functions make it possible to easily add informa-
tion to any application-defined message object. The prototypes for several of these
routines are listed here:

status_t AddBool(const char *name,
 bool aBool)

status_t AddInt32(const char *name,
 int32 anInt32)

status_t AddFloat(const char *name,
 float aFloat)

status_t AddRect(const char *name,
 BRect rect)

status_t AddString(const char *name,
 const char *string)

status_t AddPointer(const char *name,
 const void *pointer)

To add data to a message, create the message object and then invoke the
BMessage function suitable to the type of data to add to the message object. The
following snippet adds a pair of numbers, each stored as a 32-bit integer, to a
message:

#define HI_LOW_SCORE_MSG 'hilo'

BMessage *currentScoreMsg = new BMessage(HI_LO_SCORE_MSG);
int32 highScore = 96;
int32 lowScore = 71;

currentScoreMsg->AddInt32("High", highScore);
currentScoreMsg->AddInt32("Low", lowScore);

After the above code executes, a new message object exists—one that is refer-
enced by the variable currentScoreMsg. This message has a what data member
value of HI_LO_SCORE_MSG, and holds integers with values of 96 and 71.

For each Add function, the BMessage class defines a Find function. Each Find
function is used to extract one piece of information from a message:

status_t FindBool(const char *name,
 bool *value) const;

344 Chapter 9: Messages and Threads

status_t FindInt32(const char *name,
 int32 *val) const;

status_t FindFloat(const char *name,
 float *f) const;

status_t FindRect(const char *name,
 BRect *rect) const;

status_t FindString(const char *name,
 const char **str) const;

status_t FindPointer(const char *name,
 void **ptr) const;

To make use of data in a message, the originating object creates the message,
invokes Add functions to add the data, and posts the message using
PostMessage(). The receiving object invokes Find functions to extract any or all
of the message’s data from the object that receives the message.

Data added to a message always has both a name and a type. These traits alone
are usually enough to extract the data—it’s not your program’s responsibility to
keep track of data ordering in a message object (the exception being arrays, which
are covered just ahead). To access the two integers stored in the previous snip-
pet’s currentScoreMsg message object, use this code:

int32 highestValue;
int32 lowestValue;

currentScoreMsg->FindInt32("High", &highestValue);
currentScoreMsg->FindInt32("Low", &lowestValue);

It’s worthwhile to note that when adding data to a message, you can use the same
name and datatype for more than one piece of information. For instance, two high
score values could be saved in one message object as follows:

currentScoreMsg->AddInt32("High", 98);
currentScoreMsg->AddInt32("High", 96);

In such a situation, an array of the appropriate datatype (32-bit integers in this
example) is set up and the values are inserted into the array in the order they are
added to the message. As expected, array element indices begin at 0. There is a
second version of each Find routine, one that has an index parameter for finding
a piece of information that is a part of an array. For instance, the FindInt32()
function used for accessing an array element looks like this:

status_t FindInt32(const char *name,
 int32 index,
 int32 *val) const;

Application-Defined Messages 345

To access an array element, include the index argument. Here the value of 96 (the
second element, with an index of 1) is being retrieved from the
currentScoreMsg message:

int32 secondHighValue;

currentScoreMsg->FindInt32("High", 1, &secondHighValue);

Make sure to check out the BMessage class description in the Application Kit
chapter of the Be Book. There you’ll find descriptions for other Add and Find rou-
tines, such as AddInt16() and FindPoint(). You’ll also see the other variants of
each of the Add and Find routines I’ve listed. The Be Book also discusses the uni-
versal, or generic, AddData() member function. You can optionally use this rou-
tine in place of any of the type-specific functions (such as AddInt32() or
AddFloat()) or for adding data of an application-defined type to a message
object.

Message data example project

The WindowMessage2 project does the same thing as the WindowMessage1
project—it offsets all open windows when a new window is opened. Like
WindowMessage1, this latest project uses messages to carry out its task. Let’s look
at the different approach used by the two projects.

Recall that when the WindowMessage1 program opened a new window, the active
window created a single message and sent it to the application object’s
MessageReceived() function. It was then the responsibility of the application
object to locate and move each window. The application did that by looping
through the window list and calling MoveBy() for each window it encountered.

In the WindowMessage2 program, the active window’s MessageReceived() func-
tion cycles through the window list. When a window is encountered, a reference
to it is stored as data in a message, and that message is posted to the application.
When the application object’s MessageReceived() function gets the message, it
retrieves the window reference and moves that one window. Thus the window
that holds the selected New menu item may generate numerous messages (one for
each window that’s already open). The WindowMessage1 project may have acted
a little more efficiently, but WindowMessage2 gives me the opportunity to post a
slew of messages! It also gives me an excuse to store some data in each mes-
sage—something the WindowMessage1 project didn’t do.

WindowMessage2 defines the same two application-defined messages as the
WindowMessage1 project—a MENU_NEW_WINDOW_MSG issued by a selection of the
New menu item, and a MOVE_WINDOWS_MSG created by the window and sent to
the application. This latest version of the MyHelloWindow constructor is identical
to the version in the WindowMessage1 project—refer back to that example to see

346 Chapter 9: Messages and Threads

the listing. The MyHelloWindow version of MessageReceived(), however, is dif-
ferent. Instead of simply creating a new MOVE_WINDOWS_MSG and sending it to the
application, this function now repeatedly calls the BApplication function
WindowAt(). For each open window, the loop creates a new message, adds a
window reference to the message, and posts the message to the application:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case MENU_NEW_WINDOW_MSG:

 BRect theRect;
 MyHelloWindow *newWindow;
 BWindow *oldWindow;
 int32 i = 0;
 BMessage *newWindowMsg;

 while (oldWindow = be_app->WindowAt(i++)) {
 newWindowMsg = new BMessage(MOVE_WINDOWS_MSG);
 newWindowMsg->AddPointer("Old Window", oldWindow);
 be_app->PostMessage(newWindowMsg, be_app);
 }

 theRect.Set(20.0, 30.0, 220.0, 130.0);
 newWindow = new MyHelloWindow(theRect);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Each posted MOVE_WINDOWS_MSG message has the application as the designated
handler. When a message reaches the application object, that object’s
MessageReceived() function calls FindPointer() to access the window of
interest. The BMessage function name (FindPointer()), along with the data
name (“Old Window”), indicates that the message object data should be searched
for a pointer stored under the name “Old Window.” Of course, in this example,
that one piece of information is the only data stored in a MOVE_WINDOWS_MSG mes-
sage, but the technique applies to messages of any size. A window object is a
pointer, so the returned value can be used as is—a call to the BWindow function
MoveBy() is all that’s needed to relocate the window:

void MyHelloApplication::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case MOVE_WINDOWS_MSG:
 BWindow *theWindow;

Application-Defined Messages 347

 message->FindPointer("Old Window", &theWindow);
 theWindow->MoveBy(30.0, 30.0);
 break;
 }
}

If you enable the debugger and run the program, you might be able
to see multithreading in action. If you set a breakpoint in the
MyHelloApplication version of MessageReceived(), you’ll note
that, as expected, the function gets called once for each already
open window. You may be surprised to see the new window open
before the last of the already opened windows is moved. With sev-
eral windows open, a number of messages are posted to the applica-
tion. One by one the application pulls these messages from its
queue and handles each by moving one window. While that’s going
on, the code that creates the new window may very well execute.

A second message data example project

The previous two projects both relied on the user making a menu selection to
trigger the posting of a message to the application object—it was a menu item-
generated message handled in a window’s MessageReceived() function that in
turn created another message. While it may in fact be a menu item selection or
other user action that causes your program to create still another message, this
doesn’t have to be the case. The stimulus may be an event unrelated to any direct
action by the user that causes your program to create and post a message. Here, in
the AlertMessage project, the launching of an application may result in that pro-
gram creating a message.

All Be applications can be launched by either double-clicking on the program’s
icon or by typing the program’s name from the command line. Like any of the
examples in this book, the AlertMessage program can be launched by opening a
terminal window: run the Terminal application from the Tracker’s app menu,
move to the directory that holds the AlertMessage program, and type the program
name. Regardless of whether AlertMessage launches from the desktop or from the
command line, a single window opens. If the program starts up from the com-
mand line, however, the option exists to choose the number of windows that will
automatically open. To take advantage of this option, the user need simply follow
the program name with a space and the desired number of windows. Figure 9-6
shows how I worked my way into the folder that holds my copy of AlertMessage,
and how I then indicated that the program should start with three windows open.

The AlertMessage program allows at most five windows to be opened at applica-
tion launch. If you launch AlertMessage from the command line and enter a value

348 Chapter 9: Messages and Threads

greater than 5, the program will execute, but only five windows will open. In such
a case, the program gives the user an indication of what happened by displaying
an alert like the one shown in Figure 9-7.

The alert in Figure 9-7 is displayed thanks to a message the application posts to
itself. When the AlertMessage program launches from the command line, a check

Figure 9-6. Launching the AlertMessage program from the command line

Figure 9-7. The windows of the AlertMessage program

Application-Defined Messages 349

is made to see if the user-specified window value is greater than 5. If it is, an
application-defined WINDOW_MAX_MSG is created:

#define WINDOW_MAX_MSG 'wdmx'

BMessage *maxWindowsMsg = new BMessage(WINDOW_MAX_MSG);

The WindowMessage2 project demonstrated how to add a pointer to a message.
Here you see how to add a Boolean value and a string. The means are BMessage
Add functions—data of other types is added in a similar manner:

bool beepOnce = true;
const char *alertString = "Maximum windows open";

maxWindowsMsg->AddBool("Beep", beepOnce);
maxWindowsMsg->AddString("Alert String", alertString);

The beepOnce variable will be used to specify whether or not a beep should
accompany the display of the alert. The alertString holds the text to be dis-
played. Once created and set up, the message is posted to the application:

be_app->PostMessage(maxWindowsMsg, be_app);

PostMessage() specifies that the application be the message handler, so it’s the
application object’s version of MessageReceived() that gets this WINDOW_MAX_
MSG message:

void MyHelloApplication::MessageReceived(BMessage* message)
{
 switch (message->what) {

 case WINDOW_MAX_MSG:
 bool beepOnce;
 const char *alertString;
 BAlert *alert;
 long result;

 beepOnce = message->FindBool("Beep");
 alertString = message->FindString("Alert String");

 if (beepOnce)
 beep();

 alert = new BAlert("MaxWindowAlert", alertString, "OK");
 result = alert->Go();

 break;
 }
}

MessageReceived() handles the message by first accessing its data. If beepOnce
is true, a system beep is sounded. The text of the string alertString is used as

350 Chapter 9: Messages and Threads

the text displayed in the alert (refer to Chapter 4 for information about alerts and
the BAlert class).

AlertMessage is this book’s first example that uses a command-line argument in
the launching of a program, so a little extra explanation on how a program
receives and responds to such input is in order.

Command-line arguments

An application message (a system message that affects the application itself rather
than one particular window) is both received and handled by a program’s
BApplication object. A B_ARGV_RECEIVED message is such an application mes-
sage. When a program is launched with one or more arguments from the com-
mand line, a B_ARGV_RECEIVED message is delivered to the application. Unlike
most application messages, a B_ARGV_RECEIVED message holds data. In particu-
lar, it holds two pieces of data. The first, argc, is an integer that specifies how
many arguments the program receives. The second, argv, is an array that holds
the actual arguments. Because the program name itself is considered an argu-
ment, the value of argc will be one greater than the number of arguments the
user typed. The array argv will thus always have as its first element the string that
is the name of the program. Consider the case of the user launching the just-
discussed AlertMessage program as follows:

$ AlertMessage 4

Here the value of argc will be 2. The string in argv[0] will be “AlertMessage”
prefaced with the pathname, while the string in argv[1] will be “4”. Because all
arguments are stored as strings, you’ll need to convert strings to numbers as neces-
sary. Here I’m using the atoi() string-to-integer function from the standard C++
library to convert the above user-entered argument from the string “4” to the inte-
ger 4:

uint32 userNumWindows = atoi(argv[1]);

The fact that the program’s path is included as part of the program
name in the string argv[0] is noteworthy if you’re interested in
determining the program’s name (remember—from the desktop the
user is free to change the name of your application!). If the user is
keeping the AlertMessage program in the computer’s root directory,
and launches it from the command line while in a subdirectory, the
value of argv[0] will be “/root/AlertMessage”. If your program is to
derive its own name from argv[0], it should strip off leading char-
acters up to and including the final “/” character.

Application-Defined Messages 351

When a program receives a B_ARGV_RECEIVED message, it dispatches it to its
ArgvReceived() function. I’ve yet to discuss this BApplication member func-
tion because up to this point none of my example projects have had a provision
for handling user input at application launch. The AlertMessage program does
accept such input, so its application object needs to override this routine:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 virtual void MessageReceived(BMessage* message);
 virtual void ArgvReceived(int32 argc, char **argv);
};

The program relies on a number of constants in opening each window. WINDOW_
WIDTH and WINDOW_HEIGHT define the size of each window. WINDOW_1_LEFT and
WINDOW_1_TOP establish the screen position of the first window. The two offset
constants establish how each subsequent window is to be staggered from the pre-
viously opened window:

#define WINDOW_WIDTH 200.0
#define WINDOW_HEIGHT 100.0
#define WINDOW_1_LEFT 20.0
#define WINDOW_1_TOP 30.0
#define WINDOW_H_OFFSET 30.0
#define WINDOW_V_OFFSET 30.0

Regardless of whether the user launches AlertMessage from the desktop or from
the shell, one window is always opened. The AlertMessage version of
ArgvReceived() looks at the value the user typed in following the program
name and uses that number to determine how many additional windows to open.
ArgvReceived() thus opens the user-entered value of windows, less one. Before
doing that, however, the user’s value is checked to verify that it doesn’t exceed
5—the maximum number of windows AlertMessage allows. If the value is greater
than 5, ArgvReceived() creates a WINDOW_MAX_MSG, supplies this message with
some data, and posts the message. After posting the message, the number of win-
dows to open is set to the maximum of 5:

void MyHelloApplication::ArgvReceived(int32 argc, char **argv)
{
 uint32 userNumWindows = atoi(argv[1]);

 if (userNumWindows > 5) {
 bool beepOnce = true;
 const char *alertString = "Maximum windows open";
 BMessage *maxWindowsMsg = new BMessage(WINDOW_MAX_MSG);

 maxWindowsMsg->AddBool("Beep", beepOnce);
 maxWindowsMsg->AddString("AlertString", alertString);
 be_app->PostMessage(maxWindowsMsg, be_app);

352 Chapter 9: Messages and Threads

 userNumWindows = 5;
 }

 BRect aRect;
 float left = WINDOW_1_LEFT + WINDOW_H_OFFSET;
 float right = left + WINDOW_WIDTH;
 float top = WINDOW_1_TOP + WINDOW_V_OFFSET;
 float bottom = top + WINDOW_HEIGHT;
 MyHelloWindow *theWindow;
 uint32 i;

 for (i = 2; i <= userNumWindows; i++) {
 aRect.Set(left, top, right, bottom);
 theWindow = new MyHelloWindow(aRect);
 left += WINDOW_H_OFFSET;
 right += WINDOW_H_OFFSET;
 top += WINDOW_V_OFFSET;
 bottom += WINDOW_V_OFFSET;
 }

}

As mentioned in the description of the AlertMessage project, a posted WINDOW_
MAX_MSG is handled by the application object’s MessageReceived() function.
There the message data is accessed and an alert posted.

Adding data of any type to a message

The BMessage Add routines, such as AddBool() and AddString(), serve as a
sort of shorthand notation for the more generic BMessage function AddData().
AddData() can be used to add data of any type to a message. Thus, AddData()
can be used to add data of an application-defined type, or data of any of the types
that can be added using a specific Add function. Here’s the declaration for
AddData():

status_t AddData(const char *name,
 type_code type,
 const void *data,
 ssize_t numBytes,
 bool fixedSize = true,
 int32 numItems = 1)

The name and data parameters serve the same purposes as their counterparts in
the other Add routines—name serves as an identifier that’s used when later access-
ing the data through the use of a Find function, while data holds the data itself.
Unlike most Add functions, though, in AddData() the data parameter is a pointer
to the data rather than the data itself.

Because AddData() can accept data of any type, you need to specify both the
kind of data to add and the size, in bytes, of data that is to be added. Use the
appropriate Be-defined type constant for the type parameter. The third column of

Application-Defined Messages 353

Table 9-1 lists these constants for commonly used Add routines—make sure to turn
to the BMessage class description in the Application Kit chapter of the Be Book
for more Add routines and corresponding type constants.

The fixedSize and numItems parameters are useful only when adding data that
is to become the first item in a new array (recall that adding data with the same
name parameter automatically results in the data being stored in an array). Both
these parameters help AddData() work with data more efficiently. If the array is
to hold items that are identical in size (such as an array of integers), pass true for
fixedSize. If you have an idea of how many items will eventually be in the
array, pass that value as numItems. An inaccurate value for numItems just dimin-
ishes slightly the efficiency with which AddData() utilizes memory—it won’t
cause the routine to fail.

The just-described AlertMessage example project created a message object and
added a bool value and a string to that message:

bool beepOnce = true;
const char *alertString = "Maximum windows open";
BMessage *maxWindowsMsg = new BMessage(WINDOW_MAX_MSG);

maxWindowsMsg->AddBool("Beep", beepOnce);
maxWindowsMsg->AddString("AlertString", alertString);

Because AddBool() and AddString() are simply data-type “tuned” versions of
AddData(), I could have added the data using two calls to AddData(). To do
that, I’d replace the last two lines in the above snippet with this code:

maxWindowsMsg->AddData("Beep", B_BOOL_TYPE, &beepOnce, sizeof(bool));

maxWindowsMsg->AddData("AlertString", B_STRING_TYPE,
 alertString, strlen(alertString));

AddData() accepts a pointer to the data to add, so the bool variable beepOnce is
now prefaced with the “address of” operator. The string alertString is already
in the form of a pointer (char *), so it can be passed as it was for AddString().
As shown in the above snippet, if you’re adding a bool value, pass B_BOOL_TYPE

Table 9-1. BMessage Add Functions and Associated Be-Defined Type Constants

Add Member Function Datatype Added Datatype Constant

AddBool() bool B_BOOL_TYPE

AddInt32() int32/uint32 B_INT32_TYPE

AddFloat() float B_FLOAT_TYPE

AddRect() BRect object B_RECT_TYPE

AddString() Character string B_STRING_TYPE

AddPointer() Any type of pointer B_POINTER_TYPE

354 Chapter 9: Messages and Threads

as the second AddData() parameter. You generally determine the size of the data
to add through the standard library function sizeof() or, as in the case of a
string, the strlen() routine.

Like the other Add functions, AddData() has a companion Find function—
FindData(). Here’s that routine’s prototype:

status_t FindData(const char *name,
 type_code type,
 const void **data,
 ssize_t *numBytes)

FindData() searches a message for data that is of the type specified by the type
parameter and that is stored under the name specified by the name parameter.
When it finds it, it stores a pointer to it in the data parameter, and returns the
number of bytes the data consists of in the numBytes parameter. An example of
the use of FindData() appears next.

Data, messages, and the clipboard

Earlier in this chapter, I discussed the clipboard, but held off on presenting an
example project. Here’s why: the clipboard holds its data in a BMessage object,
and the details of accessing message data weren’t revealed until well past this
chapter’s first mention of the clipboard. Now that you’ve been introduced to the
clipboard and have a background in BMessage basics, working with the clip-
board will seem simple.

The clipboard is represented by a BClipboard object that includes a data mem-
ber that is a BMessage object. Items on the clipboard are all stored as separate
data in this single clipboard message object. This is generally of little importance
to you because most program interaction with the clipboard is transparent. For
instance, when you set up a Paste menu item, the B_PASTE message is associated
with the menu item, and your work to support pasting is finished. Here’s the perti-
nent code:

menu->AddItem(menuItem = new BMenuItem("Paste", new BMessage(B_PASTE), 'V'));
menuItem->SetTarget(NULL, this);

If your program has cause to add data to, or retrieve data from, the clipboard by
means other than the standard Be-defined messages, it can. Only then is it impor-
tant to understand how to interact with the clipboard’s data.

Because the clipboard object can be accessed from any number of objects
(belonging to your application or to any other running application), the potential
for clipboard data to be accessed by two threads at the same time exists. Clip-
board access provides a specific example of locking and unlocking an object, the
topic discussed in this chapter’s “Messaging” section. Before working with the clip-
board, call the BClipboard function Lock() to prevent other access by other

Application-Defined Messages 355

threads (if the clipboard is in use by another thread when your thread calls
Lock(), your thread will wait until clipboard access becomes available). When fin-
ished, open up clipboard access by other threads by calling the BClipboard func-
tion Unlock():

be_clipboard->Lock();

// access clipboard data here

be_clipboard->Unlock();

The global clipboard is typically used to hold a single item—the most recent item
copied by the user. Adding a new item generally overwrites the current item
(which could be any manner of data, including that copied from a different appli-
cation). If your thread is adding data to the clipboard, it should first clear out the
existing clipboard contents. The BClipboard function Clear() does that. After
adding its own data, your thread needs to call the BClipboard function Commit()
to confirm that this indeed is the action to perform. So while the above snippet
works fine for retrieving clipboard data, it should be expanded a bit for adding
data to the clipboard:

be_clipboard->Lock();
be_clipboard->Clear();

// add clipboard data here

be_clipboard->Commit();
be_clipboard->Unlock();

To actually access the clipboard’s data, call the BClipboard function Data(). This
function obtains a BMessage object that you use to reference the clipboard’s data.
This next snippet shows that here you don’t use new to create the message—the
Data() function returns the clipboard’s data-holding message:

BMessage *clipMessage;

clipMessage = be_clipboard->Data();

At this point, clipboard data can be accessed using BMessage functions such as
AddData() and FindData(). Here the text “Testing123” replaces whatever cur-
rently resides on the clipboard:

const char *theString = "Testing123";

be_clipboard->Lock();
be_clipboard->Clear();

BMessage *clipMessage;

clipMessage = be_clipboard->Data();

356 Chapter 9: Messages and Threads

clipMessage->AddData("text/plain", B_MIME_TYPE, theString,
strlen(theString));

be_clipboard->Commit();
be_clipboard->Unlock();

The clipboard exists for data exchange—including interapplication exchange. So
you might not be surprised to see that MIME (Multipurpose Internet Mail Exten-
sions) may be involved in clipboard usage. When you pass AddData() a type
parameter of B_MIME_TYPE, you’re specifying that the data to be added is of the
MIME main type and subtype listed in the name parameter. For adding text, use
text as the main type and plain as the subtype—resulting in “text/plain” as the
first AddData() parameter.

To retrieve data from the clipboard, use the BMessage function FindData(). This
snippet brings whatever text is currently on the clipboard into a string variable
named clipString. It also returns the number of bytes of returned text in the
variable numBytes:

be_clipboard->Lock();

BMessage *clipMessage;
const char *clipString;
ssize_t numBytes;

clipMessage = be_clipboard->Data();
clipMessage->FindData("text/plain", B_MIME_TYPE, &clipString, &numBytes);

be_clipboard->Unlock();

Clipboard example project

The ClipboardMessage project provides a simple example of adding text to the
clipboard. This project adds just a few changes to the Chapter 8 project Text-
ViewEdit. Recall that TextViewEdit displayed a window that included a single
menu with a Test item that sounds the system beep, and the four standard text-
editing items. The window also included one BTextView object. Figure 9-8 shows
that for the new ClipboardMessage project a new Add String menu item has been
added. Choosing Add String clears the clipboard and places the text “Testing123”
on it. Subsequent pastes (whether performed by choosing the Paste menu item or
by pressing Command-v) place this string at the insertion point in the window’s
text view object.

The MyHelloWindow constructor associates a new application-defined message
constant, ADD_STR_MSG, with the new Add String menu item. Except for the new
AddItem() line before the call to Show(), the MyHelloWindow constructor is

Application-Defined Messages 357

identical to the version used in the Chapter 8 TextViewEdit project on which this
new project is based, so only a part of the constructor is shown here:

#define ADD_STR_MSG 'adst'

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 ...
 menu->AddItem(menuItem = new BMenuItem("Select All",
 new BMessage(B_SELECT_ALL), 'A'));
 menuItem->SetTarget(NULL, this);
 menu->AddItem(menuItem = new BMenuItem("Add String",
 new BMessage(ADD_STR_MSG)));

 Show();
}

The MessageReceived() function holds the new clipboard code. Selecting Add
String locks and clears the clipboard, accesses the clipboard data-holding mes-
sage, adds a string to the clipboard, commits that addition, then unlocks the clip-
board for use by other threads. Here’s MessageReceived() in its entirety (recall
that the text-editing commands B_CUT, B_COPY, B_PASTE, and B_SELECT_ALL are
standard messages that are automatically handled by the system):

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case ADD_STR_MSG:

 const char *theString = "Testing123";

 be_clipboard->Lock();
 be_clipboard->Clear();

 BMessage *clipMessage;

 clipMessage = be_clipboard->Data();

Figure 9-8. The window of the ClipboardMessage program

358 Chapter 9: Messages and Threads

 clipMessage->AddData("text/plain", B_MIME_TYPE, theString,
 strlen(theString));

 be_clipboard->Commit();
 be_clipboard->Unlock();

 break;

 case TEST_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

359

Chapter 10

In this chapter:
• Files and the Storage

Kit
• Using Standard Open

and Save Panels
• Onward

10
10.Files

Many utility programs don’t involve file handling, but almost all real-world, full-
featured applications do. Before your own best-selling Be application can be con-
sidered complete, it will no doubt need to have the capability to open files, save
files, or both. In this chapter, you’ll see how these file-handling techniques are
implemented. To open a file, your program will need to find it on disk; and to
save a file, your program will need to specify a location on disk. So before getting
into the actual manipulation of files, this chapter introduces you to the BeOS file
hierarchy.

Files and the Storage Kit
Up to this point, we’ve managed to avoid the Storage Kit. Now that we’re about to
work with persistent data, though, it’s time to dig into a number of the classes in
this useful kit. The classes of the Storage Kit allow you to write programs that rec-
ognize the hierarchy of files on disk, read from and write to files, and study or
change file attributes.

There are a number of Storage Kit classes that aid in working with files, including,
unsurprisingly, the BFile class. But Be also tips its hat to Unix programmers by
supporting standard POSIX file functions such as open(), close(), read(), and
write(). If you have a Unix programming background, you’ll feel right at home
using POSIX functions to implement file-handling tasks such as saving a docu-
ment’s data to a file. If you aren’t comfortable with Unix, you probably aren’t
familiar with POSIX. That’s okay, because the Storage Kit also defines classes (such
as BFile) that let you work with files outside the realm of POSIX. In this chapter
I’ll cover file manipulation using both techniques.

360 Chapter 10: Files

POSIX, or Portable Operating System Interface for Unix, is a standard
developed so that buyers (particularly the U.S. government) could be
assured of purchasing programs that ran on a variety of systems and
configurations. A POSIX-compliant program is written to a strict stan-
dard so that it is easily ported. It’s also designed to run on any
POSIX-compliant operating system, which includes most variants of
Unix.

File Organization

The BeOS, like the Mac OS, Windows, and Unix, organizes files hierarchically.
Files, and the directories (or folders) that hold files, are organized in a hierarchy or
tree. Each directory may hold files, other directories, or both. Each item (file or
directory) has a single parent directory—a directory in which the item resides. The
parent directory of an item may, of course, have a parent of its own. Thus the cre-
ation of a hierarchy. The common ancestor for all the files and directories in the
hierarchy is a directory referred to as the root directory.

A single file, regardless of its place in the hierarchy, is considered to have both an
entry and a node. In short, a file’s entry is its pathname, or location in the hierar-
chy, while the file’s node is the actual data that makes up the file. These two parts
of a file serve different purposes, and one part can be manipulated without affect-
ing the other part. For instance, a file’s entry (its pathname) can be altered with-
out changing the file’s node (its contents, or data).

Entries

Searching, opening, and saving a file all involve an entry. Your program needs to
know, or establish, the location of a file before it can work with it. The entry_
ref data structure is used to keep track of the entry, or entries, your program is to
work with. A Be program relies on an object of the BEntry class if it needs to
manipulate an entry. In this chapter, you’ll see examples that use both the entry_
ref data structure and the BEntry class.

Nodes

To manipulate a file’s contents—something done during reading and writing a
file—a program works with the file’s node. For this purpose, the BeOS defines a
node_ref data structure and a BNode class. The BFile class is derived from
BNode, and it is the BFile class that I’ll use in this chapter’s examples.

Using Standard Open and Save Panels 361

Using Standard Open and Save Panels
An operating system with a graphical user interface typically provides standard-
ized means for opening and saving files. That maintains consistency from pro-
gram to program, and allows the user to work intuitively with files regardless of
the program being used. The BeOS is no exception. In Figure 10-1, you see the
standard Save file panel. The Open file panel looks similar to the Save file panel,
with the primary difference being the Open file panel’s omission of the text view
used in the Save file panel to provide a name for a file.

Using BFilePanel to Create a Panel

The Storage Kit defines a single BFilePanel class that’s used to create both a
Save file panel object and an Open file panel object. The BFilePanel construc-
tor, shown below, is a bit scary-looking, but as you’ll soon see, most of the argu-
ments can be ignored and left at their default values:

BFilePanel(file_panel_mode mode = B_OPEN_PANEL,
 BMessenger *target = NULL,
 entry_ref *start_directory = NULL,
 uint32 node_flavors = 0,
 bool allow_multiple_selection = true,
 BMessage *message = NULL,
 BRefFilter *filter = NULL,
 bool modal = false,
 bool hide_when_done = true);

Of the numerous arguments, by far the one of most importance is the first—mode.
The type of panel the BFilePanel constructor creates is established by the value
of mode. Once a BFilePanel object is created, there’s no way to change its type,

Figure 10-1. The standard Save file panel

362 Chapter 10: Files

so you need to know in advance what purpose the panel is to serve. To specify
that the new BFilePanel object be a Save file panel, pass the Be-defined con-
stant B_SAVE_PANEL:

BFilePanel *fSavePanel;

savePanel = new BFilePanel(B_SAVE_PANEL);

To instead specify that the new object be an Open file panel, pass the Be-defined
constant B_OPEN_PANEL. Or, simply omit the parameter completely and rely on
the default value for this argument (see the above constructor definition):

BFilePanel *fOpenPanel;

fOpenPanel = new BFilePanel();

Creating a new panel doesn’t display it. This allows your program to create the
panel at any time, then display it only in response to the user’s request. For an
Open file panel, that’s typically when the user chooses the Open item from the
File menu. For the Save file panel, the display of the panel comes when the user
chooses the Save As item from the File menu. In response to the message issued
by the system to the appropriate MessageReceived() function, your program will
invoke the BFilePanel function Show(), as done here for the fOpenPanel
object:

fOpenPanel->Show();

Assuming you follow normal conventions, the files shown are the contents of the
current working directory. When a panel is displayed, control is in the hands of
the user. Once the user confirms a choice (whether it’s a file selection in the Open
file panel, a click on the Save button in the Save file panel, or a click on the Can-
cel button in either type of panel), a message is automatically sent by the system
to the panel’s target. By default the panel’s target is the application object, but this
can be changed (either in the BFilePanel constructor or by invoking the panel
object’s SetTarget() function). The message holds information about the
selected file or files (for an Open file panel) or about the file that’s to be created
and used to hold a document’s data (for a Save file panel). The details of how to
handle the message generated in response to a user’s dismissing a panel appear in
the next sections.

The File-Handling Base Project

In Chapter 8, Text, you saw ScrollViewWindow, a program that displays a win-
dow with a text area that occupies the entire content area of the window. A sim-
ple text editor lends itself well to file opening and saving, so in this chapter I’ll
modify ScrollViewWindow to make it capable of opening existing text files and

Using Standard Open and Save Panels 363

saving the current document as a text file. Figure 10-2 shows the window the new
FileBase program displays.

While the FileBase program includes menu items for opening and saving files,
you’ll soon see that the program isn’t up to handling those chores yet. Choosing
the Open menu item displays the Open file panel, but selecting a file from the
panel’s list has no effect—the panel is simply dismissed. The Save As menu item
displays the Save file panel, but typing a name and clicking the Save button does
nothing more than dismiss the panel. FileBase serves as the basis (hence the
name) for a file-handling program. I’ll revise FileBase twice in this chapter: once to
add file-saving abilities, and one more time to include file-opening powers. With
the preliminaries taken care of here in FileBase, those two examples can focus
strictly on the tasks of saving and opening a file.

The Application class

FileBase is a spin-off of ScrollViewWindow. A quick look at how that Chapter 8
program has been enhanced makes it easier to follow the upcoming file saving
and opening changes. While looking over the old code, I’ll insert a few changes
here and there to ready the program for the file-handling code. The changes begin
in the MyHelloApplication class definition. In any Be program, a Save file panel
is associated with a particular window—the user will choose Save As to save the
contents of the frontmost window to a file on disk. An Open file panel, though, is
typically associated with the application itself. In the MyHelloApplication class,
a BFilePanel data member has been added to serve as the Open file panel
object, while a MessageReceived() function has been added to support the han-
dling of the message generated by the user choosing the Open menu item:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 virtual void MessageReceived(BMessage *message);

Figure 10-2. The window of the FileBase program

364 Chapter 10: Files

 private:
 MyHelloWindow *fMyWindow;
 BFilePanel *fOpenPanel;
};

The main() function remains untouched—it still serves as the vehicle for creating
the application object and starting the program running:

main()
{
 MyHelloApplication *myApplication;

 myApplication = new MyHelloApplication();
 myApplication->Run();

 delete(myApplication);
 return(0);
}

The application constructor now includes the single line of code needed to create
a new BFilePanel object. No mode parameter is passed, so by default the new
object is an Open file panel. Recall that the BFilePanel constructor creates the
panel, but doesn’t display it.

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-dps-mywd")
{
 BRect aRect;

 fOpenPanel = new BFilePanel();

 aRect.Set(20, 30, 320, 230);
 fMyWindow = new MyHelloWindow(aRect);
}

As you’ll see ahead, when the user chooses Open from the File menu, the applica-
tion generates a message that’s delivered to the application object. Thus the need
for a MessageReceived() function for the application class. Here the choosing of
the Open menu item does nothing more than display the previously hidden Open
file panel:

void MyHelloApplication::MessageReceived(BMessage *message) {
 switch(message->what) {

 case MENU_FILE_OPEN_MSG:
 fOpenPanel->Show();
 break;

 default:
 BApplication::MessageReceived(message);
 break;
 }
}

Using Standard Open and Save Panels 365

The window class

The window’s one menu now holds an Open item and a Save As item, so two
message constants are necessary:

#define MENU_FILE_OPEN_MSG 'opEN'
#define MENU_FILE_SAVEAS_MSG 'svAs'

The window class functions are the same, but the data members are a bit differ-
ent. The Chapter 8 incarnation of the text editing program defined a BView-
derived class that filled the window and contained the window’s text view and
scroll view. Here I’m content to place the BTextView and BScrollView objects
directly in the window’s top view. Thus the MyHelloWindow class doesn’t include
a MyDrawView member (there is no longer a MyDrawView class), but it does
include the fTextView and fScrollView members that were formerly a part of
MyDrawView. The class now also defines a BFilePanel object to serve as the
window’s Save file panel:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage *message);

 private:
 BMenuBar *fMenuBar;
 BTextView *fTextView;
 BScrollView *fScrollView;
 BFilePanel *fSavePanel;
};

Which is the better way to include views in a window—by defining
an all-encompassing view to nest the other views in, or by simply
relying on the window’s top view? It’s partially a matter of personal
preference. It’s also a matter of whether your program will make
changes that affect the look of a window’s background. The File-
Base program won’t change the overall look of its window (that is, it
won’t do something such as change the window’s background
color), so simply including the views in the window’s top view
makes sense. It also allows for a good example of an alternate
implementation of the Chapter 8 way of doing things!

The MyHelloWindow constructor begins in typical fashion with the setup of the
menu and its items:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)

366 Chapter 10: Files

{
BMenu *menu;
BMenuItem *menuItem;
BRect menuBarRect;

menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
AddChild(fMenuBar);

menu = new BMenu("File");
fMenuBar->AddItem(menu);
menu->AddItem(menuItem = new BMenuItem("Open",

 new BMessage(MENU_FILE_OPEN_MSG)));
menuItem->SetTarget(be_app);
menu->AddItem(new BMenuItem("Save As",

 new BMessage(MENU_FILE_SAVEAS_MSG)));

If you’re referencing the Chapter 8 program from which FileBase is
derived, you’ll see that the MyHelloWindow constructor just lost a
few lines of code. The ScrollViewWindow version of the constructor
started with code to resize the window size-defining rectangle
frame. Since the FileBase window no longer includes a MyDrawView
under the menubar, there’s no need to resize the frame such that it
fills the window, less the menubar area.

The MyHelloWindow constructor next establishes the size of the text view and the
text rectangle nested in that view. The constructor creates the BTextView object,
makes it a part of a BScrollView object, and then adds the scroll view to the
window:

 BRect viewFrame;
 BRect textBounds;

 viewFrame = Bounds();
 viewFrame.top = MENU_BAR_HEIGHT + 1.0;
 viewFrame.right -= B_V_SCROLL_BAR_WIDTH;

 textBounds = viewFrame;
 textBounds.OffsetTo(B_ORIGIN);
 textBounds.InsetBy(TEXT_INSET, TEXT_INSET);

 fTextView = new BTextView(viewFrame, "MyTextView", textBounds,
 B_FOLLOW_ALL, B_WILL_DRAW);

 fScrollView = new BScrollView("MyScrollView", fTextView,
 B_FOLLOW_ALL, 0, false, true);
 AddChild(fScrollView);

Using Standard Open and Save Panels 367

Finally, the Save file panel is created and the window displayed:

 fSavePanel = new BFilePanel(B_SAVE_PANEL, BMessenger(this), NULL,
 B_FILE_NODE, false);

Show();
}

Unlike the creation of the Open file panel, the creation of the Save file panel
requires that a few parameters be passed to the BFilePanel constructor. You
already know that the first BFilePanel argument, mode, establishes the type of
panel to be created. The other parameters are worthy of a little explanation.

The second argument, target, is used to define the target of the message the sys-
tem will deliver to the application in response to the user’s dismissal of the panel.
The default target is the application object, which works well for the Open file
panel. That’s because the Open file panel affects the application, and is refer-
enced by an application data member. The Save file panel, on the other hand,
affects the window, and is referenced by a window data member. So I want the
message sent to the window object rather than the application object. Passing
BMessenger with the window object as the target makes that happen. There’s no
need to preface BMessenger() with new, as the BFilePanel constructor handles
the task of allocating memory for the message.

The other argument that needs to be set is the fifth one—allow_multiple_
selection. Before passing a value for the fifth argument, I need to supply values
for the third and fourth arguments. The third argument, panel_directory, speci-
fies the directory to list in the Open file panel when that panel is first displayed.
Passing a value of NULL here keeps the default behavior of displaying the current
working directory. The fourth argument, node_flavors, is used to specify the
type of items considered to be valid user selections. The Be-defined constant
B_FILE_NODE is the default flavor—it specifies that a file (as opposed to, say, a
directory) is considered an acceptable user choice. The argument I’m really inter-
ested in is the fifth one—allow_multiple_selection. The default value for this
argument is true. FileBase doesn’t support the simultaneous opening of multiple
files, so a value of false needs to be passed here.

FileBase terminates when the user closes a window. As you’ve seen before, that
action results in the hook function QuitRequested() being invoked:

bool MyHelloWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);

 return(true);
}

368 Chapter 10: Files

An application-defined message is issued in response to the user choosing Save As
from the File menu. In response to that message, the program shows the already-
created Save file panel by invoking the BFilePanel function Show().

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case MENU_FILE_SAVEAS_MSG:
 fSavePanel->Show();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Saving a File

Converting FileBase to a program that fully supports file saving is a straightfor-
ward process. No changes are needed in the MyHelloApplication class. The
MyHelloWindow class needs one new member function, a routine that imple-
ments the saving of a window’s data to a file in response to the user’s dismissing
the Save file panel. The SaveAsFile example program adds that one function—the
Save() routine holds the code that implements the saving of a document’s text to
disk. So the class declaration now contains a public declaration of Save():

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage *message);
 status_t Save(BMessage *message);

 private:
 BMenuBar *fMenuBar;
 BTextView *fTextView;
 BScrollView *fScrollView;
 BFilePanel *fSavePanel;
};

When a Save file panel is dismissed, the system sends a B_SAVE_REQUESTED mes-
sage to the affected application. This message is directed to the
MessageReceived() function of the Save file panel’s target. Recall that in the
FileBase program the second parameter passed to the BFilePanel constructor
specified that the window be the target of the Save file panel. So the window’s
implementation of MessageReceived() receives the message. Embedded in this
message is the pathname at which the file is to be saved. MessageReceived()
passes this information on to the application-defined routine Save():

Using Standard Open and Save Panels 369

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case MENU_FILE_SAVEAS_MSG:
 fSavePanel->Show();
 break;

 case B_SAVE_REQUESTED:
 Save(message);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

On the following pages we’ll look first at saving a file using POSIX, then at saving
a file with the Storage Kit.

Using POSIX to save a file

To work with files, you can use either the BFile class or a POSIX file of type
FILE. Here file-saving will be performed using the FILE type—see the sections
“Using the Storage Kit to save a file” and “Opening a File,” for examples of work-
ing with the BFile class.

The Save() function begins with a number of local variable declarations. Each is
described as it’s encountered in the Save() routine:

status_t MyHelloWindow::Save(BMessage *message)
{
 entry_ref ref;
 const char *name;
 BPath path;
 BEntry entry;
 status_t err = B_OK;
 FILE *f;

The message received by MessageReceived() and passed on to Save() has a
what field of B_SAVE_REQUESTED, a directory field that holds an entry_ref,
and a name field that holds the user-entered filename string describing a single
entry in a directory. The directory field’s entry_ref structure points to the
directory to which the user specified the file is to be saved. Invoking the
BMessage function FindRef() strips out this reference and saves it to the entry_
ref variable ref:

 if (err = message->FindRef("directory", &ref) != B_OK)
 return err;

370 Chapter 10: Files

Next, the filename is retrieved from the message. The BMessage function
FindString() saves the message’s name field to the string variable name:

 if (err = message->FindString("name", &name) != B_OK) {
 return err;

The next several steps are performed to get the directory and name into a form
that can be passed to a file-opening routine. Recall that a file consists of an entry
(a location) and a node (data). The entry can be represented by an entry_ref or
a BEntry object. Currently the entry is in the form of an entry_ref. Here the
entry is stored in a BEntry object. The BEntry function SetTo() handles that
task:

 if (err = entry.SetTo(&ref) != B_OK)
 return err;

A BPath object normalizes a pathname. That is, it reformats a pathname to clean it
up by, say, excluding a trailing slash (such as /boot/myDir/). The BEntry func-
tion GetPath() is used to store the BEntry information as a BPath object. Here
the BPath object path is first set to the directory, then the filename is appended
to the directory:

 entry.GetPath(&path);
 path.Append(name);

The somewhat convoluted journey from the message’s entry_ref to a BEntry
object to a BPath object is complete. Now the file directory and name appear
together in a form that can be used in the POSIX file opening function fopen():

 if (!(f = fopen(path.Path(), "w")))
 return B_ERROR;

With a new file opened, it’s safe to write the window’s data. The POSIX file func-
tion fwrite() can be used for that job. The data to write is the text of the win-
dow’s text view. That text is retrieved by calling the BTextView function Text().
The number of bytes the text occupies can be obtained from the BTextView func-
tion TextLength(). After writing the data to the file, call the POSIX file function
fclose():

 err = fwrite(fTextView->Text(), 1, fTextView->TextLength(), f);
 fclose(f);

 return err;
}

Using the Storage Kit to save a file

Using POSIX is straightforward, but so too is using the Storage Kit. Here I’ll mod-
ify the previous section’s version of the application-defined Save() function so
that saving the file is done with a reliance on the Storage Kit rather than on
POSIX:

Using Standard Open and Save Panels 371

status_t MyHelloWindow::Save(BMessage *message)
{
 entry_ref ref;
 const char *name;
 status_t err;

The ref and name variables are again declared for use in determining the direc-
tory to save the file to and the name to give that file. The err variable is again
present for use in error checking. Gone are the BPath variable path, the BEntry
variable entry, and the FILE variable f.

The above code is unchanged from the previous version of Save(). First,
FindRef() is used to strip the directory in which the file should be saved from
the message that was passed to Save(). Then FindString() is invoked to
retrieve the filename from the same message:

 if (err = message->FindRef("directory", &ref) != B_OK)
 return err;
 if (err = message->FindString("name", &name) != B_OK) {
 return err;

Now comes some new code. The location to which the file is to be saved is con-
tained in the entry_ref variable ref. This variable is used as the argument in the
creation of a BDirectory object. To ensure that the initialization of the new direc-
tory was successful, call the inherited BNode function InitCheck():

 BDirectory dir(&ref);
 if (err = dir.InitCheck() != B_OK)
 return err;

A BFile object can be used to open an existing file or to create and open a new
file. Here we need to create a new file. Passing the directory, filename, and an
open mode does the trick. The open mode value is a combination of flags that
indicate such factors as whether the file is to have read and/or write permission
and whether a new file is to be created if one doesn’t already exist in the speci-
fied directory. After creating the new file, invoke the BFile version of
InitCheck() to verify that file creation was successful:

BFile file(&dir, name, B_READ_WRITE | B_CREATE_FILE);
 if (err = file.InitCheck() != B_OK)
 return err;

With a new file opened, it’s time to write the window’s data. Instead of the POSIX
file function fwrite(), here I use the BFile function Write(). The first argu-
ment is the text to write to the file, while the second argument specifies the num-
ber of bytes to write. Both of the BView functions Text() and TextLength()
were described in the POSIX example of file saving. After the data is written

372 Chapter 10: Files

there’s no need to explicitly close the file—a file is automatically closed when its
BFile object is deleted (which occurs when the Save() function exits):

 err = file.Write(fTextView->Text(), fTextView->TextLength());

 return err;
}

Opening a File

You’ve just seen how to save a file’s data using Be classes to work with the file’s
path and standard POSIX functions for performing the actual data writing. Here I’ll
dispense with the POSIX and go with the BFile class. The last example, SaveAs-
File, was derived from the FileBase program. I’ll carry on with the example by
now adding to the SaveAsFile code such that the OpenSaveAsFile example
becomes capable of both saving a text file (using the already developed POSIX
file-saving code) and opening a text file (using the BFile class).

When an Open file panel is dismissed, the system responds by sending the appli-
cation a B_REFS_RECEIVED message that specifies which file or files are to be
opened. Rather than appearing at the target’s MessageReceived() routine,
though, this message is sent to the target’s RefsReceived() function. The Open
file panel indicates that the application is the panel’s target, so a RefsReceived()
function needs to be added to the application class:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 virtual void MessageReceived(BMessage *message);
 virtual void RefsReceived(BMessage *message);

 private:
 MyHelloWindow *fMyWindow;
 BFilePanel *fOpenPanel;
};

The implementation of RefsReceived() begins with the declaration of a few
local variables:

void MyHelloApplication::RefsReceived(BMessage *message)
{
 BRect aRect;
 int32 ref_num;
 entry_ref ref;
 status_t err;

The rectangle aRect defines the boundaries of the window to open:

 aRect.Set(20, 30, 320, 230);

Using Standard Open and Save Panels 373

The integer ref_num serves as a loop counter. While the Open file panel used in
the OpenSaveAsFile example allows for only one file selection at a time, the pro-
gram might be adapted later to allow for multiple file selections in the Open file
panel. Creating a loop that opens each file is an easy enough task, so I’ll prepare
for a program change by implementing the loop now:

ref_num = 0;
 do {
 if (err = message->FindRef("refs", ref_num, &ref) != B_OK)
 return;
 new MyHelloWindow(aRect, &ref);
 ref_num++;
 } while (1);
}

The message received by RefsReceived() has a what field of B_REFS_RECEIVED
and a refs field that holds an entry_ref for each selected file. Invoking the
BMessage function FindRef() strips out one reference and saves it to the entry_
ref variable ref. The ref_num parameter serves as an index to the refs array of
entry_refs. After the last entry is obtained (which will be after the first and only
entry in this example), an error occurs, breaking the otherwise infinite do-while
loop.

With an entry obtained, a new window is created. Note that the MyHelloWindow
constructor now receives two parameters: the boundary-defining rectangle the
constructor always has, and a new entry_ref parameter that specifies the loca-
tion of the file to open. Rather than change the existing constructor, the
MyHelloWindow class now defines two constructors: the original and the new
two-argument version:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 MyHelloWindow(BRect frame, entry_ref *ref);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage *message);
 status_t Save(BMessage *message);

 private:
 void InitializeWindow(void);
 BMenuBar *fMenuBar;
 BTextView *fTextView;
 BScrollView *fScrollView;
 BFilePanel *fSavePanel;
};

When the program is to create a new, empty window, the original
MyHelloWindow constructor is called. When the program needs to instead create a

374 Chapter 10: Files

new window that is to hold the contents of an existing file, the new
MyHelloWindow constructor is invoked.

The two MyHelloWindow constructors will create similar windows: each will be
the same size, have the same menubar, and so forth. So the two constructors share
quite a bit of common code. To avoid writing redundant code, the
MyHelloWindow class now defines a new routine that holds this common code.
Each constructor invokes this new InitializeWindow() routine. The file-
opening version of the MyHelloWindow constructor then goes on to implement
file handling.

Note in the above-listed MyHelloWindow class that the InitializeWindow()
routine is declared private. It will be invoked only by other MyHelloWindow
member functions, so there’s no need to allow outside access to it. Because all of
the code from the original version of the MyHelloWindow constructor, with the
exception of the last line (the call to Show()), was moved wholesale to the
InitializeWindow() routine, there’s no need to show the entire listing for this
new function. Instead, a summary is offered below. To see the actual code, refer
back to the walk-through of the MyHelloWindow constructor in this chapter’s “The
File-Handling Base Project” section.

void MyHelloWindow::InitializeWindow(void)
{
 // menu code

 // text view code

 // Save file panel code
}

Almost all of the code found in the original version of the MyHelloWindow con-
structor has been moved to InitializeWindow(), so the original, one-argument
version of the constructor shrinks to this:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 InitializeWindow();

 Show();
}

The new two-argument version of the constructor begins similarly:

MyHelloWindow::MyHelloWindow(BRect frame, entry_ref *ref)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 InitializeWindow();

Onward 375

With the window set up, it’s on to the file-opening code. In the file-saving exam-
ple, standard POSIX functions were used. Here a BFile object and BFile func-
tions are instead used—beginning with the declaration of a BFile object:

 BFile file;

The second parameter passed to this MyHelloWindow constructor is the entry_
ref for the file to open. That ref variable is used in a call to the BFile function
SetTo() to assign the BFile object a file to open. With the successful assign-
ment of a file to open, it’s on to the actual file-opening. That begins with the dec-
laration of a couple of variables:

 if (file.SetTo(ref, B_READ_ONLY) == B_OK)
 {
 off_t length;
 char *text;

The size of the file to open is determined, and returned, by the BFile function
GetSize():

 file.GetSize(&length);

Sufficient memory is allocated for the file’s contents by a call to malloc():

 text = (char *) malloc(length);

Now it’s time to read the file’s data. The BFile function Read() handles that
chore. The data is text, so it’s saved to the character pointer text. Invoking the
BTextView function SetText() sets the text of the window’s text view to the
read-in text, while a call to free() releases from memory the no-longer-needed
file data. With the window set up and the text view holding the data to display,
there’s nothing left to do but display the window with a call to Show():

 if (text && (file.Read(text, length) >= B_OK))
 fTextView->SetText(text, length);
 free(text);
 }
 Show();
}

Onward
This chapter’s OpenSaveAsFile example is the most complete program in this
book—it actually does something quite useful! Using the techniques presented in
the preceding chapters, you should be able to turn OpenSaveAsFile into a real-
world application. Begin by polishing up the File menu. Add a New item—that
requires just a few lines of code. Also add a Quit item to provide a more graceful
means of exiting the program. Chapter 8 covered text editing in detail—use that
chapter’s techniques to add a complete, functioning Edit menu. Those changes will

376 Chapter 10: Files

result in a useful, functional text editor. If you want to develop a program that’s
more graphics-oriented, go ahead—Chapter 4, Windows, Views, and Messages, and
Chapter 5, Drawing, hold the information to get you started. If you take that route,
then you can always include the text-editing capabilities covered here and in
Chapter 8 as a part of your program. For example, a graphics-oriented application
could include a built-in text editor that allows the user to enter and save notes.

Regardless of the type of application you choose to develop, check out Be’s web
site at http://www.be.com/. In particular, you’ll want to investigate their online
developer area for tips, techniques, and sample code. For reference documenta-
tion, consider the Be Book, Be’s own HTML-formatted documentation. For a more
complete hardcopy version of that book, look into obtaining one or both of the
O’Reilly & Associates books Be Developer’s Guide and Be Advanced Topics.

377

Index

Symbols
= (assignment) operator, 87
== (comparison) operator, 83

Numbers
2D and 3D graphics, 79
32-Bits/Pixel (Colors pop-up menu), 143

A
accessing

menu items, 246–248, 258
menus and menubars, 227, 253–256
views, 110–116, 210
windows, 103–107

ActivateApp() (BRoster), 327
Add methods (BMessage), 343–345,

352–354
AddChild() (BWindow), 71, 116, 210–211,

229, 233
AddData() (BMessage), 352–355
AddItem()

BMenu class, 230, 233, 245
BPopUpMenu class, 265

AddPoints() (BPolygon), 167
AddSeparatorItem() (BMenu), 246
AlertMessage project (example), 347–354
alerts (MyHelloWorld project

example), 93–97
alignment (see location (positioning))

Alignment()
BStringView class, 284
BTextView class, 301

AMP (asymmetric multiprocessing), 2
angle of drawn characters, 278
API (application programming interface), 6
APPI resources, 44–46

editing, 61
Application Kit, 7, 76, 323–330
Application Server, 14, 76
application-defined messages, 127, 331–358

adding/retrieving message
data, 343–347, 352–354

AlertMessage project
(example), 347–354

handling, 333–335
applications (BApplication class), 13,

23–26, 76, 325–326
application-information

resources, 44–46
HelloApplication class (example), 70–71
as instance of BLooper, 20
roster of (BRoster class), 327–329
SimpleApp program (example), 26–28,

65
SimpleApplication class (example), 24,

70
window data members, 107

apps folder, 32
argv-only applications, 44
assignment (=) operator, 87

378 Index

asymmetric multiprocessing (AMP), 2
AttachedToView() (BView), 67
AttachedToWindow()

BView class, 67
MyDrawView class (example), 120, 175

B
B_ABOUT_REQUESTED message type, 127
B_ALIGN_CENTER constant, 284, 301
B_ALIGN_LEFT constant, 284, 301
B_ALIGN_RIGHT constant, 284, 301
B_ALL_WORKSPACES constant, 103
B_ARGV_RECEIVED message, 350–352
B_BORDERED_WINDOW window

type, 101
B_CELLS_... constants, 144
B_CMAP8 color space, 135
B_CONTROL_ON constant, 183
B_COPY message, 293, 330
B_CURRENT_WORKSPACE constant, 103
B_CUT message, 293, 330
B_DOCUMENT_WINDOW window

type, 101
B_FLOATING_WINDOW window

type, 101
B_FOLLOW_ALL constant, 67, 235, 242,

317
B_FOLLOW_BOTTOM constant, 242
B_FOLLOW_LEFT constant, 242, 264
B_FOLLOW_NONE constant, 236, 242, 310
B_FOLLOW_RIGHT constant, 242
B_FOLLOW_TOP constant, 242, 264
B_FONT_SIZE constant, 299
B_FRAME_EVENTS constant, 287
B_GRAY1 color space, 135
B_GRAY8 color space, 135
B_H_SCROLL_BAR_HEIGHT constant, 307
B_HORIZONTAL constant, 308
B_ITEMS_IN_COLUMN constant, 264
B_ITEMS_IN_ROW constant, 264
B_KEY_DOWN message type, 129,

131–133
B_KEY_UP message type, 129
B_MAIN_SCREEN_ID constant, 100
B_MIXED_COLORS pattern, 138, 150–152

bit definition, 153
B_MODAL_WINDOW window type, 101
B_MOUSE_DOWN message type, 129–130
B_MOUSE_UP message type, 129

B_NAVIGABLE constant, 264
B_NO_BORDER constant, 314
B_NOT_CLOSABLE constant, 102
B_NOT_H_RESIZABLE constant, 102
B_NOT_MINIMIZABLE window

behavior, 102
B_NOT_MOVABLE constant, 102
B_NOT_RESIZABLE constant, 69, 102
B_NOT_V_RESIZABLE constant, 102
B_NOT_ZOOMABLE constant, 69, 102
B_OPEN_PANEL constant, 362
B_PASTE message, 293, 330
B_PLAIN_BORDER constant, 314
B_PULSE_NEEDED constant, 287
B_QUIT_REQUESTED message, 20
B_RGB15 color space, 135
B_RGB32 color space, 135
B_RGBA32 color space, 135
B_SAVE_PANEL constant, 362
B_SELECT_ALL message, 293, 330
B_SOLID_HIGH pattern, 138, 150–152

bit definition, 153
B_SOLID_LOW pattern, 138, 150–152

bit definition, 153
B_TITLED_WINDOW window type, 101
B_TWO_STATE_BUTTON constant, 194
B_V_SCROLL_BAR_WIDTH constant, 307
B_VERTICAL constant, 308
B_WILL_ACCEPT_FIRST_CLICK

constant, 103
B_WILL_DRAW constant, 264
background applications, 44
background color (views), 140, 301
backward compatibility, 4
BAlert class (MyHelloWorld project

example), 93–97
BApplication class, 13, 23–26, 76, 325–326

application-information
resources, 44–46

BRoster class and, 327–329
HelloApplication class (example), 70–71
as instance of BLooper, 20
messages (see application-defined

messages)
SimpleApp program (example), 26–28,

65
SimpleApplication class (example), 24,

70
window data members, 107

Index 379

BArchivable class, 78
base projects (see projects, creating new)
BButton class, 178, 181–182, 189–193

MenuAndControl project
(example), 237–243

BCheckBox class, 178, 198–203
turning on/off, 183, 198

BClipboard class, 330, 354–358
ClipboardMessage project

(example), 356–358
BColorControl class, 141–150, 179
BControl class, 12, 177–225

BButton class, 189–193
BCheckBox class, 198–203
BPictureButton class, 193–198
BRadioButton class, 203–214
BTextControl class, 214–220
ControlDemo project example, 220–225
enabling/disabling or turning

on/off, 183
handling, 184–189
labels, 184
menus with (example), 237–243

BDirectory class, 78, 371
BDirectWindow class, 79
be_app variable, 20, 25
be_bold_font pointer, 274
be_clipboard variable, 330
be_fixed_font pointer, 274
be_plain_font pointer, 274
be_roster variable, 327
BeApp project stationery, 52
beep(), 116, 133
BeginPicture()

BPicture class, 194
BView class, 173

BeIDE, 28–74
creating new projects, 47–65
file organization, 31–34
project contents, 34–47
project preferences, 63
search and replace utility, 59–61

BEntry class, 360, 370
BeOS

development environment (see BeIDE)
features, 1–5
programming environment, 28–30
programming fundamentals, 13–28

software kits, 7–13
class descriptions in this book,

explained, 83–89
overview of, 75–80

structure, 5–6
BeSTL project stationery, 52
BFile class, 78, 371
BFilePanel class, 361

FileBase project (example), 362–368
OpenSaveAsFile project

(example), 372–375
SaveAsFile project (example), 368–372

BFont class, 272–273, 277
FontSetting project (example), 280–282

BHandler class, 15, 76, 324
text editing menu items, 293

bigtime_t data type, 116
BInvoker class, 293
bit definitions of patterns, 152
BList class, 328
BLocker class, 78
BLooper class, 15, 76, 127, 324

posting and dispatching
messages, 337–343

preferred handlers, 294
BMediaNode class, 78
BMenu class

BControls with (example), 237–243
creating menus, 229
selecting menu items, 230, 234, 239–242
SimpleMenuBar project

(example), 231–236
submenus (hierarchical

menus), 268–271
BMenuBar class

adding menubars to windows, 228–230
BControls with (example), 237–243
SimpleMenuBar project, 231–236

BMenuField class, 264–265
label/menu divider, 267

BMenuItem class
accessing menu items, 246–248, 258
changing menu item labels, 250, 256
creating menu items, 229, 244–246, 256
disabling/enabling menu items, 252, 257
handling menu item selection, 230, 234,

239–242
marking menu items, 248–250

380 Index

BMenuItem class (continued)
menu items for text editing, 293
submenus (hierarchical

menus), 268–271
(see also menus and menubars)

BMessage class, 14, 126–133, 324, 336–358
adding/retrieving message

data, 343–347, 352–354
application-defined messages, 127
controls and, 177, 184–189
interface messages, 127, 129
naming conventions, 186
system messages, 14, 20
(see also BHandler class; BLooper class)

B_MOUSE_MOVED message type, 129
BNode class, 78, 360
/boot/apps folder, 32
/boot/apps/Metrowerks folder, 33
/boot/develop folder, 32
/boot/home folder, 34
borders of scroll views, 313
B_ORIGIN constant, 70
Bounds() (BView), 124, 317
BPicture class, 173–176

scrolling graphics, 318–321
BPictureButton class, 178, 193–198
BPoint class, 159–162
BPolygon class, 166–168
BPopUpMenu class, 263

creating pop-up menus, 265–266
BRadioButton class, 179, 203–214

BView hierarchy and, 209–211
turning on/off, 183

BRect class, 21, 85–87, 162–165
rounded corners, 164
(see also BPolygon class)

BRegion class, 168–173
testing for inclusion in, 170

Broadcast() (BRoster), 327
BRoster class, 327–329
BScreen class, 100
BScrollBar class, 305–312

range of scrollbars, 310–312
BScrollView class, 305, 312–321

ScrollViewText project
(example), 314–316

BStringView class, 272, 282–286
StringView project (example), 285

BTextControl class, 179, 214–220

BTextView class, 272, 286–305
altering text characteristics, 297–305
BClipboard and, 330
editing, 291–297
rectangle boundaries, 287–289
ScrollViewText project

(example), 314–316
TextView project (example), 289–291
TextViewEdit project

(example), 295–297
TextViewFont project

(example), 302–305
TextViewScrollBar project

(example), 308–310
buttons (BButton class), 178, 181–182,

189–193
MenuAndControl project

(example), 237–243
picture buttons, 193–198

BView class, 77, 110–126
access views, 110–116
BWindows and, 365
colors

background, 140
default colors, 137

coordinate system, 121–126
drawing in views (see drawing)
focus view, 131
HelloWorldView class (example), 66–69
hierarchy of views, 116–121, 209–211
mouse clicks and key presses, 130–133
resizing windows and, 235, 242
scrolling and (see BViewScroll class)
stroke and fill functions, 150
text and (see BStringView class;

BTextView class)
updating views, 212–214
window-filling views, 240

BWindow class, 15–23, 77, 87–89, 98–110
accessing windows, 103–107
BControls with (see BControl class)
BViews and, 365
characteristics of, 99–103
coordinate system, 121–126
fonts for titles, 274
HelloWindow class example, 69
as instance of BLooper, 19
menus with (see menus and menubars;

pop-up menus)

Index 381

resizing windows, views and, 235, 242
ScrollViewWindow project

(example), 316–318
SimpleWindow class (example), 17–22,

69
types of windows, 101
window-filling views, 240
windows as data members, 107–109
(see also BView class)

BWindowScreen class, 79

C
C functions in Network Kit, 79
check marks for menu items, 248–250
checkboxes (BCheckBox class), 178,

198–203
turning on/off, 183, 198

CheckBoxLater project (example), 202–203
CheckBoxNow project (example), 199–202
classes

descriptions in this book,
explained, 83–89

inheritance hierarchies, 10–13
naming conventions, 9
of software kits, 80–89

Clear() (BClipboard), 355
clipboard (BClipboard class), 330, 354–358

ClipboardMessage project
(example), 356–358

code locks (BLocker class), 78
color, 135–150

background (views), 301
color controls (BColorControl

class), 141–150, 179
color spaces, 135
ColorControl project

(example), 145–150
high and low colors, 137–140
RGB system, 136
text, 297–301
text (string views), 285

color_control_layout datatype, 143
Colors pop-up menu, 142
command-line arguments, 350–352
Commit() (BClipboard), 355
comparison (==) operator, 83
compiling source code, 38
constants, naming conventions for, 10
constructors, 18, 81

consumer nodes, 78
Contains() (BRegion), 170, 173
ControlDemo project example, 220–225
controls (BControl class), 12, 177–225

buttons (BButton class), 189–193
checkboxes (BCheckBox

class), 198–203
ControlDemo project example, 220–225
enabling/disabling or turning

on/off, 183
fonts for labels, 274
handling, 184–189
labels, 184
menus with (example), 237–243
picture buttons (BPictureButton

class), 193–198
radio buttons (BRadioButton

class), 203–214
text fields (BTextControl class), 214–220

converting between file formats, 80
cooperative multitasking, 3
coordinate system, 121–126

(see also location (positioning))
copy, cut, paste support, 291–295
copyrights on source code, 48
.cpp filename extension, 29, 38
cut, copy, paste support, 291–295

D
data members, 80

naming conventions, 9
views as, 110–113
windows as, 107–109

Data() (BClipboard), 355
Debug mode, 37
debugger folder

(/boot/apps/Metrowerks), 33
default buttons, 190
default colors, 137
derived classes (see inheritance hierarchies)
destructor functions, 81
develop folder, 32
development environment (see BeIDE)
Device Kit, 8, 79
directory hierarchy, 360
directory objects (BDirectory class), 78
Disable Debugger (Project menu item), 37
disabled state (controls), 179, 183
DisableMenuItem project (example), 257

382 Index

disabling menu items, 252, 257
dispatching messages, 127, 337–343

menu items and, 340
DispatchMessage() (BLooper), 332, 335,

338
DoesWordWrap() (BTextView), 302
Draw()

BView class, 67–68, 140
MyDrawView class (example), 120
MyHelloView class (example), 124

DrawBitMap() (BView), 194
drawing, 134–176

colors, 135–150
patterns, 138, 150–155
pen, 155–159
pictures, 173–176
shapes, 159–176

DrawPicture() (BView), 174
DrawString() (BView), 72, 115, 273, 282

E
Edit menu, creating, 292–295
editable text (BTextView class), 272,

286–305
clipboard and (BClipboard class), 330
editing, 291–297
TextView project (example), 289–291
TextViewFont project

(example), 302–305
TextViewScrollBar project

(example), 308–310
ellipses, 165–166
Enable Debugger (Project menu item), 37
enabled state (controls), 179, 183
enabling menu items, 252, 257
EndPicture()

BPicture class, 194
BView class, 173

entries (BEntry class), 360, 370
entry_ref structure, 360, 369
etc folder (/boot/develop), 33
EverythingApp project stationery, 52
exclusive launch behavior, 44
explicitly generated messages, 335

F
FILE data type, 369
file objects (BFile class), 78

FileBase project (example), 362–368
files, 359–376

BeIDE organization, 31–34
BFile class, 371
common filename extensions, 29
converting between formats, 80
file panels (BFilePanel class), 361–375

FileBase project (example), 362–368
OpenSaveAsFile project

(example), 372–375
SaveAsFile project

(example), 368–372
global search/replace (BeIDE), 59–61
hierarchy of, 360
project organization conventions, 39
renaming project files, 50
Storage Kit, 359–360
(see also header files; library files;

source code)
FileTypes application, 45

graphical editor, 46
fill functions (BView), 150

FillEllipse(), 166
FillPolygon(), 167
FillRect(), 138, 163
FillRegion(), 170
FillTriangle(), 168

FillRegion() (BRegion), 171
FillRoundRect() (BView), 165
Find methods (BMessage), 343–345
FindApp() (BRoster), 327
FindByName project (example), 114–116
FindData() (BMessage), 354–355
FindItem() (BMenu), 247
FindItemByMark project (example), 258
FindMarked() (BMenu), 250
FindRef() (BMessage), 369, 371
FindString() (BMessage), 370–371
FindView()

BView class, 211, 307
BWindow class, 113–116

fixed-width font, 274
focus view, 131
folder objects (BDirectory class), 78
folders, BeIDE, 31–34
fonts, 273–282

altering characteristics of, 276–280
BFont class, 272–273, 277
FontSetting project (example), 280–282

Index 383

getting information and setting, 297–300
system fonts, 273–276
TextViewFont project

(example), 302–305
fopen() (POSIX), 370
format translations, 80
frame coordinates (window size), 99
Frame()

BScreen class, 100
BView class, 125

FrameMoved() (BWindow), 88
functions (see member functions)
fwrite() (POSIX), 370

G
Game Kit, 9, 79
GetAppInfo() (BRoster), 327
GetAppList() (BRoster), 327–329
GetFont() (BView), 278
GetFontAndColor() (BTextView), 297–298,

301
GetFrontWindow() (MyHelloApplication;

example), 105–107
GetPath() (BEntry), 370
GetRange() (BScrollBar), 312
GetSize() (BFile), 375
global coordinate system, 121
global file search/replace (BeIDE), 59–61
global system fonts, 273–276
global variables, naming conventions, 10
graphical editor, FileTypes, 46
graphics

2D and 3D, 79
BPicture class, 173–176
colors, 135–150
converting file formats, 80
drawing pen, 155–159
patterns, 138, 150–155
scrolling, 305–321

ScrollViewPicture project
(example), 318–321

shapes, 159–176

H
.h filename extension, 29, 39
handlers (see message handlers)
header files, 32, 38–42

editing code for reuse, 53–55

preprocessor directives, 56
headers folder (/boot/develop), 32
height (see size)
HelloApplication (see MyHelloApplication

class)
HelloWorld project (example), 34

editing header files, 54–55
editing source code, 57–59
file organization of, 39–42
MyHelloWorld project, 72–74, 89–97

BAlert class with, 93–97
source code, 92–93, 96

source code, 65–74
(see also MyHelloWorld project)

hierarchical menus, 268–271
hierarchy of views, 116–121, 209–211, 243
high and low colors, 137–140
HighColor() (BView), 138
home folder (/boot), 34
hook functions, 81–83

system messages, 127–128

I
icon resources, 46

changing, 62–63
IDE (see BeIDE)
#ifndef preprocessor, 56
implicitly generated messages, 333–334
IndexOf() (BMenu), 258
inheritance hierarchies, 10–13
InitCheck()

BFile class, 371
BNode class, 371

inline keyword, 86
InsetBy() (BView), 290
instances, defined, 23
Intel projects, 36
interactive multidimensional modeling, 79
Interface Kit, 7, 77, 93
interface messages, 127, 129
interface system messages, 331
Invalidate() (BView), 116
IsEditable() (BTextView), 292
IsEnabled()

BMenu class, 253
BMenuItem class, 252

IsFront() (BWindow), 104
IsMarked() (BMenuItem), 249
IsRunning() (BRoster), 327

384 Index

IsSelectable() (BTextView), 292
IsStylable() (BTextView), 300

K
Kernel Kit, 8, 80
KernelDriver project stationery, 52
key presses, 131
keyboard shortcuts, 227, 245–246, 253–256

text editing, 291–295
KeyDown()

BColorControl class, 147
BView class, 131–133

L
Label() (BMenuItem), 251
label fonts, 274
labeling menu items, 250, 256
labels, controls, 184

text fields, 214
launch behavior, 44
Launch() (BRoster), 327
lib folder (/boot/develop), 32
libbe.so library, 36
libnet.so library, 36
library files, 32, 36
libroot.so library, 36
lines, drawing, 160–162
lists (BList class), 328
location (positioning)

alignment of text, 284, 301
BTextView text, 287–289
coordinate system, 121–126
drawing objects (see shapes)
drawing pen, 155–157
menubars, 229
text field areas, 216
windows, 99, 101

Lock(), 325
BClipboard class, 355
BLocker class, 78

locking code (BLocker class), 78
locking/unlocking data, 325
loops (see message loops)
low and high colors, 137–140
LowColor() (BView), 138

M
Mail Kit, 8
main(), 26

HelloWorld project example, 71
MakeDefault() (BButton), 190
MakeEditable() (BTextView), 292
makefile, 30, 33
MakeFocus() (BView), 131, 290
MakeSelectable() (BTextView), 292
marking menu items, 248–250
Media Kit, 8, 78
media nodes (BMediaNode class), 78
member functions, 9, 81–83
memory, 3–4
MenuAndControl project

(example), 237–243
MenuAndPopup project (example), 266
menus and menubars, 226–271

accessing, 227, 253–256
accessing menu items, 246–248, 258
adding menubars to windows, 228–230
BMenuItem class, 293
changing menu item labels, 250, 256
controls with (example), 237–243
creating menu items, 229, 244–246, 256
creating menus, 229
disabling/enabling menu items, 252, 257
handling menu item selection, 230, 234,

239–242
marking menu items, 248–250
message dispatching and, 340
multiple menus, 258–262
pop-up menus, 262–268
resizing windows, 235, 242
shortcuts for menu items, 245–246
SimpleMenuBar project

(example), 231–236
submenus (hierarchical

menus), 268–271
MenusAndSubmenus project

(example), 269–271
text editing commands in, 292–295

message handlers (BHandler class), 15, 76,
324

Index 385

message loops (BLooper class), 15, 76, 127,
324

posting/dispatching messages, 337–343
preferred handlers, 294

MessageReceived(), 231, 234
BApplication class, 326
BHandler class, 187, 333
BLooper class, 333
BWindow class, 177, 187–189
ControlDemo project (example), 222
MyHelloWindow class

(example), 191–193
messages, 322–325

adding/retrieving message
data, 343–347, 352–354

WindowMessage2 project
(example), 345–347

AlertMessage project, 347–354
application-defined, 331–358

handling, 333–335
application-defined messages, 127
BMessage class, 324, 336–358
ClipboardMessage project

(example), 356–358
controls and, 177, 184–189
interface messages, 127, 129
naming conventions, 186
posting and dispatching, 127, 337–343

menu items, 340
WindowMessage1 project

(example), 339–343
system messages, 14, 20, 326, 330–333

constants for, 336
handling, 331–333

text editing commands, 293
messages (BMessage class), 14, 126–133

interface messages, ??–129
(see also message handlers; message

loops)
Metrowerks folder, 33
microkernel, 5
Midi Kit, 8, 79
MIDI (Musical Instrument Digital

Interface), 79
mouse clicks, 130
MouseDown() (BView), 130
MovePen project (example), 156
MovePenBy() (BView), 155–157
MovePenTo() (BView), 115, 155–157

moving (see location)
multiple inheritance, 10
multiple launch behavior, 44
multiprocessing, 2
multitasking, 3
multithreading (see threads)
MyDrawView class (example), 118–121

colors, 140–141, 147
drawing objects

drawing pen, 156, 158
patterns, 154
points and lines, 161
rectangles, 164
regions, 171–173

MyHelloApplication class (example)
obtaining frontmost window, 105
windows as data members, 108

MyHelloView class (example)
coordinate system, 124–126
key presses, 132–133
mouse clicks, 130
multiple views, 118

MyHelloWindow class (example), 106
controls in

buttons, 190–193
checkboxes, 200–203
multiple control example, 221–225
picture buttons, 195–198
radio buttons, 205–214
text fields, 218–220

MessageReceived(), 188
MyHelloWorld project (example), 72–74,

89–97
BAlert class with, 93–97
obtaining frontmost window, 106
source code, 92–93, 96
views as data members, 110–116
window data members, 109

N
names

BeOS naming conventions, 9
control labels, 184

text fields, 214
library files, 36
menu field labels, 264, 267
menu item labels, 244, 250, 256
messages, application-defined vs.

system, 186

386 Index

names (continued)
project filename conventions, 39
renaming project files, 50
views, 210–211

nested views, 77
Network Kit, 8, 79
new operator, 22
NewMyHelloWorld project (example), 111
nodes (BNode class), 78, 360
nodes, media (BMediaNode class), 78
normalizing pathnames, 370

O
OffsetTo() (BRect), 70, 125
OneSmallView project (example), 126
OneView project (example), 124
Open file panels, 361–375

FileBase project (example), 362–367
OpenSaveAsFile project

(example), 372–375
OpenGL Kit, 8, 79
optional folder, 34
orientation of scrollbars, 308
overloaded operators, 83
overview of class descriptions,

explained, 84

P
paste, cut, copy support, 291–295
pathname normalization, 370
Pattern project (example), 154
pattern structure, 153
patterns, 138, 150–155

designing custom, 151–155
line drawing, 160
rectangles with, 163

pen (drawing), 155–159
PenSize() (BView), 158
PenSize project (example), 158
picture buttons (BPictureButton class), 178,

193–198
Picture project (example), 175
PictureButton project (example), 195–198
pictures (BPicture class), 173–176

scrolling, 318–321

pixel location (see coordinate system)
pixels, drawing (see points)
plugins folder

(/boot/apps/Metrowerks), 33
PointAndLine project (example), 161
points (BPoint class), 159–162
polygons (BPolygon class), 166–168
pop-up menus, 262–268

creating, 265–266
label/menu divider, 267

positioning (see location)
POSIX file functions, 359, 369
posting messages, 337–343
PostMessage()

BLooper class, 335, 337–343
SimpleWindow class (example), 19

PowerPC projects, 36
preemptive multitasking, 3
preferences for BeIDE projects, 63
preferred handlers, 294
preprocessor directives, 56
private data members, 80
producer nodes, 78
profiling folder

(/boot/apps/Metrowerks), 33
.proj filename extension, 30, 35
project files, 35–38
Project menu, 37
project window, 35
projects (BeIDE), 28, 31–74

contents of, 34–47
creating new, 47–65
file organization conventions, 39
preferences, setting, 63
stationeries for, 52

protected memory, 3
public data members, 80
push buttons (see buttons)

Q
Quit() (BWindow), 89
QuitRequested()

BLooper class, 69
MyHelloWindow class (example), 114
SimpleWindow class (example), 19–21,

82

Index 387

R
radio buttons (BRadioButton class), 179,

203–214
turning on/off, 183
view hierarchy and, 209–211

radio mode (menus), 249–250, 263
RadioButtonGroup project

(example), 205–214
RadioButtonGroupFrame project

(example), 214
RAM (see memory)
range, scrollbars, 310–312
Read() (BFile), 375
rectangles (BRect class), 21, 85–87,

162–165
Rectangles project (example), 164
rounded corners, 164
(see also polygons)

Region project (example), 170
regions (BRegion class), 168–173

RegionTest project (example), 171
testing for inclusion in, 170

relocating (see location)
resizing mode

scroll views, 313
scrollbars, 310
string views, 283
text views, 287

resizing (see size)
resources, 42–47

editing resource files, 61–63
rgb_color structure, 136
RGB color system, 136
RGBColor project (example), 139–140
root directory, 360
RosterCheck project (example), 327–329
rosters (BRoster class), 327–329
rotation of text, 279
rounded corners on rectangles, 164
.rsrc filename extension, 30
Run mode, 37
Run() (BApplication), 25, 76
Run/Debug (Project menu item), 37

S
sample-code folder, 33
Save file panels, 361–375

FileBase project (example), 367–368

SaveAsFile project (example), 368–372
Screen preferences window, 142
screens (BScreen class), 100
ScrollBar() (BScrollView), 318
scrolling, 305–321

BScrollBar class, 305–312
TextViewScrollBar project

(example), 308–310
BScrollView class, 312–321

ScrollViewPicture project
(example), 318–321

ScrollViewText project
(example), 314–316

ScrollViewWindow project
(example), 316–318

scrollbar range, 310–312
search and replace utility (BeIDE), 59–61
“Select All” support, 291–295
separators in menu item lists, 246
servers, 5
Set()

BPoint class, 159
BRect class, 21, 70, 163

SetAlignment()
BStringView class, 284, 286
BTextView class, 301

SetDisabled (controls), 183
SetDivider()

BMenuField class, 267
BTextControl class, 217

SetEnabled()
BControl class, 12
BMenu class, 253
BMenuItem class, 252
controls, 183

SetFont() (BView), 68, 273–274, 278, 285,
297

SetFontAndColor() (BTextView), 297,
299–301

SetFontSize() (BView), 68, 273, 285
SetHelloViewFont() (MyHelloWindow;

example), 112–113
SetHighColor() (BView), 137, 285, 297
SetLabel()

BControl class, 184
BMenuItem class, 250

SetLowColor() (BView), 137
SetMarked() (BMenuItem), 248
SetPenSize() (BView), 157

388 Index

SetRadioMode() (BMenu), 250, 263
SetRange() (BScrollBar), 311
SetResizingMode() (BView), 310
SetRotation() (BFont), 279
SetShear() (BFont), 278
SetShortcut() (BMenuItem), 254
SetStylable() (BTextView), 300
SetTarget() (BInvoker), 293
SetText()

BStringView class, 284
BTextControl class, 216

Settings window (BeIDE projects), 63
SetTo()

BEntry class, 370
BFile class, 375

SetTrigger() (BMenuItem), 255
SetValue() (BControl), 183
SetViewColor() (BView), 141
SetViewPicture() (MyDrawView;

example), 261
SetWordWrap() (BTextView), 302
shapes, 159–176

ellipses, 165–166
pictures and, 173–176
points and lines, 159–162
polygons, 166–168
rectangles (see rectangles)
regions, 168–173
triangles, 168

SharedLib project stationery, 52
shear, font, 278
Shortcut() (BMenuItem), 254
shortcuts for menu items, 227, 245–246,

253–256
text editing, 291–295

Show()
BFilePanel class, 362
BWindow class, 68, 70, 89, 125

signatures, application, 44, 46
editing, 61

SimpleApp program (example), 26–28, 65
SimpleApplication class (example), 24, 70
SimpleMenuBar project (example), 231–236
SimpleWindow class (example), 17–22, 69
single launch behavior, 44
size

drawing pen, 157–159
font size, 276–277, 299
resizing mode

scroll views, 313
scrollbars, 310
string views, 283
text views, 287

scrollbar range, 310–312
text field areas, 216
windows, 99, 101, 235, 242

slope of drawn characters, 278
SMP (symmetric multiprocessing), 2
snooze(), 116
software kits, 6–13

class descriptions, 80–89
in this book, explained, 83–89

inheritance hierarchies, 10–13
list of, 7–9
overview of, 75–80

source code, 38–42
compiling, 38
copyrights on, 48
editing for reuse, 53–61
HelloWorld project (example), 39–42,

65–74
standard messages, 293, 331
state, controls, 179, 183, 198
stationeries for BeIDE projects, 52
stationery folder

(/boot/apps/Metrowerks), 33
Storage Kit, 8, 78, 359–360

saving files, 370
strcmp(), 251
string views (see BStringView class)
strings (see text)
StringWidth() (BView), 267
stroke functions (BView), 150

StrokeEllipse(), 165
StrokeLine(), 160–162
StrokePolygon(), 167
StrokeRect(), 163
StrokeRoundRect(), 164
StrokeTriangle(), 168

stroke functions, StrokeRect(), 291
submenus, 268–271
Support Kit, 8, 78
symmetric multiprocessing (SMP), 2
system fonts, 273–276
system messages, 14, 20, 127, 293, 326,

330–333
constants for, 336
controls and, 177, 184–189

Index 389

system messages (continued)
handling, 331–333
(see also messages)

T
Tab key to navigate controls, 179
testing

projects, 51–53
source code changes, 61, 63

Text()
BStringView class, 284
BTextControl class, 216

text, 272–321
alignment, 284, 301
angle of drawn characters, 278
characteristics of, 276–280, 297–305
on clipboard (see clipboard)
editable (BTextView class)

clipboard and (BClipboard
class), 330

editable (text views), 272, 286–305
editing, 291–297
ScrollViewText project

(example), 314–316
TextView project (example), 289–291
TextViewEdit project, 295–297
TextViewFont project

(example), 302–305
TextViewScrollBar project

(example), 308–310
fonts, 273–282

BFont class, 272–273, 277
FontSetting project

(example), 280–282
system fonts, 273–276

manipulating in strings, 284
rotating, 279
scrolling, 305–321
simple (BStringView class), 272,

282–286
StringView project (example), 285

wrapping in text views, 302
text editor project (example), 316–318
text fields (BTextControl class), 179,

214–220
TEXT_INSET constant (example), 289
text views (see BTextView class)
TextField project (example), 218–220
TextLength() (BTextView), 370

TextViewEdit project (example), 295–297
TextViewScrollBar project

(example), 308–310
threads, 2, 13, 322

Kernel Kit, 80
multiprocessing and, 2
(see also messages)

three-dimensional graphics, 79
title, window, 100
tools folder (/boot/apps/Metrowerks), 33
tools folder (/boot/develop), 33
top view, 116
Translation Kit, 8, 80
triangles, drawing, 168
Trigger() (BMenuItem), 255
triggers for menu items, 227, 255
turning on/off controls, 183, 198
two-dimensional graphics, 79
TwoButtons project (example), 190–193
TwoItemMenu project (example), 256
TwoMenus project (example), 259–262
two-state controls, 183
TwoViewClasses project, 118

U
Unlock(), 325

BClipboard class, 355
BLocker class, 78

unlocking/locking data, 325
updating views, 212–214

V
Value() (BControl), 184
variables, naming conventions for, 10
_VIEW_H constant, 55
ViewColor program (example), 141
ViewDataMember project (example), 111
views (BView class), 77, 110–126

accessing, 110–116
colors

background (views), 140
default colors, 137

coordinate system, 121–126
drawing in (see drawing)
focus view, 131
HelloWorldView class (example), 66–69
hierarchy of, 116–121, 209–211, 243
mouse clicks and key pressed, 130–133

390 Index

views (BView class) (continued)
resizing windows and, 235, 242
scrolling (BViewScroll class), 305
stroke and fill functions, 150
textual (see text)
updating, 212–214
window-filling views, 240
windows and, 365

ViewsKeyMessages project
(example), 132–133

ViewsMouseMessages project
(example), 130

virtual functions, 127–128
virtual memory, 4

W
what data member (BMessage), 185
width (see size)
WindowAt() (BApplication), 104, 342
WindowMessage1 project

(example), 339–343
WindowMessage2 project

(example), 345–347
windows (BWindow class), 15–23, 77,

87–89, 98–110
accessing, 103–107
BWindowScreen and BDirectWindow

classes, 79

characteristics of, 99–103
controls in (see controls)
coordinate system, 121–126
as data members, 107–109
fonts for titles, 274
HelloWindow class example, 69
as instance of BLooper, 19
menus with (see menus and menubars;

pop-up menus)
resizing, views and, 235, 242
ScrollViewWindow project

(example), 316–318
SimpleWindow class (example), 17–22,

69
types of windows, 101
views and, 365
window-filling views, 240
(see also views)

WindowTester project (example), 109
word wrap, 302
workspaces for windows, 103
wrapping text, 302
Write() (BFile), 371

